
Host application developing for the

RF-family hand terminals

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 2

Document history:

28.9.2005 Version 1.0 by Ari Pöyhönen.

Abstract

The Nordic ID RF-family hand terminals are easy and flexible solution for real-time and remote
control of database. The RF-family hand terminals acts like a terminal client for the backend system
so there is no need for programming of the hand terminal. The backend system runs on a server in
which the hand terminal connects through the base station(s). The backend system is responsible
for the User Interface elements such as Text Buttons and Input fields.

This document is intended for developing the backend system for RF-family hand terminals.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 3

Contents

Document history: 2

Abstract 2

1 System operation 10

1.1 Operation of the Hand terminal 10

1.2 Initial state 10

1.3 Starting transaction 11

1.4 How many hand terminals can be used in same system? 11

2 Host application 12

2.1 Host application security 12

2.1.1 Radio link security 13

2.2 Checklist for good quality backend software developing 13

2.3 Character map of the hand terminal 14

2.4 Single- or multi threaded application? 14

2.4.1 Single thread application 15

2.4.2 Multi threaded application 15

2.5 Drivers 16

2.5.1 PLServer 16

2.5.2 Drivers for non-windows environment 17

3 Building development environment 18

3.1 System requirements 18

3.2 Sample program installation 19

3.3 Installing hardware 19

3.4 Test your hardware 19

4 My first host application 20

4.1 Creating”Hello World” Visual C++ project 20

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 4

5 Handling hand terminal messages 21

5.1 DataArrived event 21

5.1.1 DataArrived (event) 22

5.1.2 Starting the data handler thread 23

5.2 Forms 23

5.2.1 Hand terminal display area 23

5.2.2 Application forms 24

5.2.3 Designing forms 24

5.2.4 User Interface elements 24

5.2.5 Main menu 25

5.2.6 Handling data from Main menu form 26

5.2.7 The branching of the program 27

5.2.8 Clearing the UI elements 28

6 Input fields 28

6.1 Creating an input field 28

6.2 Input field reading to the application 31

6.2.1 The validation of the input field contents 31

6.3 Sending the text to the input field 32

6.3.1 Modifying the existing input field 32

6.3.2 Password style input fields 33

7 PopMessage 34

8 Sounds 35

9 Sending a message to hand terminal 35

9.1 Application example 35

9.1.1 What method 36

9.1.2 What 36

9.1.3 Hand terminal behavior when “What” is sent. 36

9.1.4 Using “What” method instead of “Receiver” method 37

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 5

10 Base station connections 37

10.1 Serial port connection 38

10.2 Connecting several base stations 39

10.2.1 Device servers 39

10.2.2 StartServer 41

11 Receiving and Transmitting RAW data 41

12 RF6xx Application Router 42

12.1 The RF6xx Application Router features 43

12.2 System operation 43

12.3 Format of connList.txt 44

12.3.1 Serial Port Connection: 44

12.3.2 Start Server 44

12.3.3 Client connection. 44

12.3.4 HOST application connections 45

12.4 Format of appList.txt 45

12.4.1 List of Remote host applications 45

12.4.2 Hand terminal access right list 45

12.4.3 Main menu item text 46

12.4.4 Main menu header text 46

12.4.5 Host down notification text 47

13 Host application samples on the CD 47

13.1 Forms sample 48

13.1.1 Calculator 48

13.1.2 Auto Scanning 48

13.1.3 User authorization form 49

13.2 FastInventory 49

13.3 WhatTest 50

13.4 SlideControl 52

13.5 Software wedge 53

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 6

13.6 PLMultiThread 54

13.7 ScanAndSend 55

14 APPENDIX A PLServer methods and events 56

14.1 Base station connection methods 56

14.1.1 Connect 56

14.1.2 StartServer 57

14.1.3 StopServer 57

14.1.4 ConnectToSerialServer 58

14.1.5 DisconnectSerialServer 58

14.1.6 GetSerialSvrStatus 59

14.1.7 SerialServerMessage (event) 59

14.2 User Interface elements 60

14.2.1 Text and TextEx 60

18.2.2 Button 60

14.2.3 NewField 61

14.2.4 NewFieldEx 62

14.2.5 PopMessage 63

14.2.6 Ack 63

14.2.7 SpecialCmd 64

14.2.8 GetSpecialData 67

14.3 Form and UI-element commands 67

14.3.1 ClearForm 67

14.3.2 ClearCmd 68

14.3.3 FieldCmd 68

14.3.4 FldTxt 69

14.3.5 SetView 69

14.3.6 SetFormID 70

14.3.7 GetFormID 71

14.3.8 What 71

14.3.9 What (event) 73

14.3.10 Send 73

14.3.11 DataArrived (event) 73

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 7

14.3.12 DataFromHsField (event) 74

14.3.13 SetNotify 75

14.4 Sound methods 75

14.4.1 Bell 75

14.4.2 Beep 76

14.5 Data receiving 77

14.5.1 GetData 77

14.5.2 IsData 77

14.5.3 GetExtraID 78

14.5.4 GetMessageNumber 78

14.5.5 GetRSSI 78

14.5.6 GetLastFrameID 79

14.5.7 GetReceiveBuffer 79

14.5.8 GetBatteryLevel 79

14.5.9 GetCRCValue 80

14.5.10 GetHsIdString 80

14.5.11 GetSourceIPAddr 80

14.6 Receiver mode 81

14.6.1 Receiver 81

14.6.2 IsReceiver 82

14.6.3 SendMsg 83

14.6.4 WaitReceiverAck 83

14.6.5 MessageReceiverNotFound (event) 84

14.7 The hand terminal serial port methods 84

14.7.1 DataToSerial 84

14.7.2 BinaryToSerial 85

14.7.3 WaitSerial 85

14.7.4 GetSerialData 86

14.8 Raw data methods 87

14.8.1 SendRawData 87

14.8.2 RawDataArrived (event) 87

14.9 General methods 88

14.9.1 DataIn 88

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 8

14.9.2 DataOut (event) 88

14.10 Sub Station Mode methods (SSM) 88

14.10.1 SendSSMData 89

14.10.2 SendSSMASCIIData 90

14.10.3 WaitSSMData 91

14.10.4 SendSSMAck 91

14.10.5 DataFromSSM (event) 92

14.10.6 DataFromSSMASCII (event) 92

14.11 Colors of PLServer “ID box” 93

15 APPENDIX B RF6xx Communication protocol 94

15.1 Message Frame Structure 94

15.1.1 Calculating CRC 95

15.1.2 Hand terminal Display 95

15.1.3 Initial Display Prompt 96

15.1.4 Text output on the Hand terminal Display 96

15.1.5 Commands HOST --> Hand terminal 96

15.1.6 Order of Execution OF Commands 97

15.1.7 SET_CURSOR 98

15.1.8 NEW_FIELD 98

15.1.9 NEW_FIELD_EX 99

15.1.10 FIELD_CMD 100

15.1.11 FLD_TXT 100

15.1.12 BUTTON 100

15.1.13 CLEAR_CMD 101

15.1.14 SEND_WHAT 101

15.1.15 SET_VIEW 102

15.1.16 POPMSG 102

15.1.17 BELL 102

15.1.18 BELL_EX 102

15.1.19 DATA_TO_SERIAL 103

15.1.20 WAIT_SERIAL 103

15.1.21 RECEIVER 104

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 9

15.1.22 FORM_ID 104

15.1.23 SPC_CMD 105

15.1.24 Commands Hand terminal --> HOST 108

16 APPENDIX C RF600 SSM mode protocol 110

16.1 Purpose of this document 110

16.2 Overview 110

16.3 The power-on configuration 110

16.4 Sending data from the host to the SSM base station 111

16.5 Sending data from the SSM base station to the host 111

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 10

1 System operation

The system consists of radio hand terminals, which are used to communicate wireless with the
host system via a receiver device using a very efficient communications protocol. The host system
can be just a PC or a more complex computer system.

The application software runs by the host system, the handheld appears to it like a wireless
keyboard/display/scanner. This eliminates the need for programming the handheld units, thus
making software development and updating extremely easy and allowing software to be flexible in
application. And more, the communication is rapid because it is real time.

1.1 Operation of the Hand terminal

The Hand terminal is designed to use application specific forms i.e. fields in the virtual display. This
helps to make the user interface of the Hand terminal flexible and easy-to-use. The commands
used to generate, modify, read and write the forms are described later in this document.

1.2 Initial state

After the batteries have been plugged in to the hand terminal, initial screen appears to the display.
Also, when no forms are used, the initial screen prompts.
The hand terminal shows as a prompt a user writeable header and an input field. This field can

be filled with data from the keyboard or from a laser scanner. Any text sent by the Host Computer
will clear the screen and show the text that was sent. Any user input (from the keyboard or a laser
scanner) will clear the text and the initial screen will be displayed again.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 11

1.3 Starting transaction

The user starts a transaction by using the Hand terminal keyboard to make an entry, or by reading
a barcode. The Hand terminal then sends this data to the Host Computer (via the receiver device)
and waits for a message from the Host. If it does not receive a correct (check summed) message
within the specified time-out period, it will resend the original data as many times as it has been
instructed.

By default, the hand terminal sends 3 times between 1 second. If no answer during that time,
transaction failure will be generated on the hand terminal.

Note: When no entry is made on the Hand terminal by the user, it will remain in a standby state
 and will not be able to receive data from the Host Computer. There are some exceptions
 to this which will be described later.

1.4 How many hand terminals can be used in same system?

In theory, up to 65536 hand terminals can communicate with the host. But in practice, it depends
a lot on the radio traffic. In theory, one transaction takes max of 300 ms on the air when using in
RF600 system.

In the RF600 system the backend software receives circa three transactions per second depending
on the backend system response time is quick enough (<50ms).

In the RF650 system the backend software can receive 21 transactions per second if the backend
system is multithreaded and the response time is quick enough (<50ms).

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 12

2 Host application

The backend software can be executed in which ever computer and operating system in use. The
RF-family hand terminals are not equipment and/or operating system dependent.

What the backend software does, is simply to receive data from the hand terminal, handle it and
give response to terminal.

After the hand terminal begins the transaction by sending a data, it always waits for a response
from the backend software. For that reason, it is very important to send a response from the
backend software as quick as possible. The user can not operate with the hand terminal before the
response is received.

2.1 Host application security

Sometimes the signal of the hand terminal overlaps with the area where another RF-system is
being used in the same rf-channel. In this case there is possibility that the user interface of the
other backend systems is displayed in the hand terminal screen. To avoid this situation follow the
instruction below.

1. Always use different channel than the other system uses. The co-operation with the other
systems operator has to be made so that there are no same channels used in both systems.
Also it is strongly recommended that the consecutive channels are not used.

2. Do not set the backend software so that it can communicate with the unauthorized hand
terminals. The backend system has to keep a log of the hand terminals commID which
have right to access the system. If the unauthorized hand terminal is trying to communicate
with the server, the queries has to be rejected and NO information to the hand held has to
be transmited.

In the backend system, the DataArrived –event at the PLServer event handler should
always first authorize the hand terminal before the requests are transmitted any further.

3. Even if the hand terminal is authorized, User login and password authorization scheme
has to be used to confirm that the user of the hand terminal has access to the backend
software

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 13

2.1.1 Radio link security

The system developer has to estimate the importance of the secured radio pathway. Often the
transferred information is not so confidential that data encryption is really needed.

The encryption of data is recommended if data includes pin-codes or social security numbers.

The RF600 –devices are operated with 434MHz radio. The radiolink encryption is not very
complicated but it takes a lot of technical and special knowledge to decode it

The RF600 hand terminals include a data encryption -feature. The data is encrypted by using a 24-
bit encryption key. The same encryption key has to be entered in both hand terminal and the base
station in order them to get work together. By default the data scrambling –feature is disabled but
if needed it can be enabled with the RF600 configuration software (Piccopla).

The RF650 Bluetooth radio is secure enough to transfer confidential data.

2.2 Checklist for good quality backend software developing

• Keep response times as fast as possible

• Ignore the requests from unidentified hand terminals

• Always answer to requests (except those from the unidentified hand terminals)

• Validate the data from the hand terminal and responce to that

• Develop application as multithread type.

• Do not resend the UI-control if the hand terminal has it already.

• Use a different radio channel than in adjacent companies.

• Do not overrun the send buffer. The maximum size of transmitted data to the hand terminal
is 255 bytes. If the send buffer is full the PLServer UI-elements creation functions return
FALSE. The RF6XX protocol commands DATA cell sizes are listed in Appendix B.

• Estimate the maximum number of hand terminals and transactions / hand terminal in worst
case scenario. This can occur in e.g. stock taking situation and there is a danger that radio
link or backend software chokes. In the RF600 backend system max 3 transactions per
second can be achieved if the response time is below 50ms in the backend software.

• Test the system as well as possible before the installing it to the customer. E.g. the
software works with one or two hand terminals, but how does it work in a 10 hand terminal
environment?

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 14

• Estimate the number of base stations needed. If the operating area of the hand terminals can
not be covered with one base station, the number of base stations needs to be increased.
Also the base stations have to be connected to the LAN with the Device server.

2.3 Character map of the hand terminal

The character map of the hand terminals is shown in ASCII table below.

If no desired characters found, please contact NordicID.

2.4 Single- or multi threaded application?

In the RF600 system there can be dozens of hand terminals operating simultaneously with the
backend software. When the number of hand terminals increase, the backend software has to be
able to handle them all. The hand terminal users may simultaneously send data to the backend
software.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 15

2.4.1 Single thread application

The single thread application the messages are handled in a queue. If the handling of the message
takes seconds, all other hand terminals are not able to receive any information from the backend
software at the time.

The single threaded application can be used in the system where the hand terminals are not at very
intensive use. Fast data handling can prevent the delays in hand terminal.

2.4.2 Multi threaded application

In the multi threaded application the messages are handled simultaneously at separate processes.
The response is sent after the message is handled regardless the other processes states.

The multithreaded application is recommended to use if there are several hand terminals in the
system and the use of them is intensive.
Visual Basic does not offer appropriate tools for multithreaded applications. All multithreaded

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 16

examples in this document are made with Visual C++.

2.5 Drivers

The driver software preprocesses the data from the hand terminals. The base station has already
checked the CRC and the origin of the data before relaying it to the software driver.

Functions of the driver:

• Relays the data to the application

• Resends the data

• Blocks similar consecutive messages to the application.

• In a multiple base station system driver sends the response from the host thru the best
received signal strength base station.

2.5.1 PLServer

Nordic ID provides the driver for the Windows environment. The PLServer is a Windows ActiveX
control (PLServer.ocx), which controls the data communication between the base station and the
HOST application.

Example of the application where PLServer control is used

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 17

The PLServer makes HOST system software development easy by doing all the dirty work for you.
The use of PLServer provides a lot of functionality and code that you don’t have to write or debug.
All you have to do is to figure out the entry points and how to use them.

Note: Latest PLServer version can be downloaded from:
http://www.nordicid.com

2.5.2 Drivers for non-windows environment

If the backend software is executed in the non-windows environments (UNIX, Linux, AS400) the
driver software must be developed to the environment also (see RF-family communication protocol,
Appendix B).

However it is possible to create a backend system where the business logic is executed in non-
windows environment e.g. AS400 or UNIX. In this case the PLServer runs in the windows-based
computer and communicates in a network with an actual backend system.

http://www.nordicid.com

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 18

The advantage of this procedure is that there is no need for developing drivers to the non-windows
operating system. So the actual application developing time is faster.

See also Chapter: RF6XX Application Router from this document.

This document describes the application development to the Windows OS with PLServer ActiveX
component.

3 Building development environment

The ”RF-family host programming tutorial” cd includes example programs in Visual basic and
Visual C++. All examples use the PLServer ActiveX component.

3.1 System requirements

System requirements for the application developing:

• RF-family hand terminal (RF600 or RF650)

• RF600 Base Station / Bluetooth dongle (RF650)

• PC with Windows OS (W2k or XP)

• Serial port connection for the RF600 Base Station

• Visual Studio .NET 2003 or later (optional)

• ”RF-Family host programming tutorial” CD

• RF-family hand terminal (RF600 or RF650)

• RF600 base station or Bluetooth dongle (RF650)

• Windows PC (w2k or XP)

• Physical Serial port (RS232) for the RF600 base station

• Visual Studio .NET 2003 or later (optional)

• ”RF-Family host programming tutorial” CD

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 19

3.2 Sample program installation

Insert “RF-Family host programming tutorial” CD in to the disk drive and wait until setup starts
up.

Default directory for the sample-files:
Program filesNordicIDRF-familySamples

The example software can be launched at:
Start ProgramsNordicIDRF-familySamples

Setup reqisters the PLServer automatically.

3.3 Installing hardware

Follow the instructions with the hand terminal and base station to install the hardware.

3.4 Test your hardware

Follow the steps below to ensure the communication between the host and the hand terminal:

1. Start ”Hello world” application from StartProgramsNordicIDRF-familySamples

2. Select correct COM port for the RF600 base station.

3. Press OK- or any F-key from the hand terminal.

4. “Hello World” text should appear in to the hand terminal screen.

5. “Hello World” text disappears when pressing any key from the hand terminal.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 20

Possible reasons for failure:

• No batteries in the hand terminal
• No serial cable connected between the base station and the PC COM port.
• No power in the base station
• The Base station and the hand terminal are in different channel
• The base station has been connected to wrong COM port
• The COM port is already used by another device. (Create file error.. in PLServer screen.

4 My first host application

Follow instructions in this chapter to create “Hello World” –type application with Visual C++.

4.1 Creating”Hello World” Visual C++ project

1. Start Visual Studio .NET 2003
2. Select from File menu New Project…
3. Select project type as MFC and template: MFC application
4. Set Name and Location and press OK
5. MFC application wizard starts
6. Set application type: Dialog based. Press “Finnish” button.
7. Open Main dialog from the Resource view.
8. Right mouse click over dialog and select Insert ActiveX control..
9. Select PLServer control from the list.
10. Place PLServer control to proper place in to the dialog.
11. Right mouse click over PLServer and select “Add variable..” .
12. Set PLServer control variable like: m_pl
13. Right mouse click over PLServer and select “Add Event Handler..”
14. At Event handler wizard, select “DataArrived”.
15. Go to edit DataArrived handler and add two lines of code:

m_pl.PopMessage(id,64,”Hello World”);
m_pl.Send(id,-1);

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 21

16. Add button to dialog
17. Set button caption “Connect to COM port”
18. Goto button click handler and add one line of code:

m_pl.Connect(4);
// This Connects to COM4.
// Choose correct COM number for your base station

19. Compile executable and run it.
20. Press “Connect to COM port” button.
21. Press OK or and F-key from the hand terminal.
22. “Hello World” PopMessage appears to the hand terminal screen.

HelloWorld esimerkki koodit löytyvät Samples hakemistosta:

• HelloWorld_VC (Visual C++)

• HelloWorld_VB (Visual Basic)

5 Handling hand terminal messages

When user starts a transaction by sending a data to the host, the PLServer sends a “DataArrived”-
event to the backend software. The application handles the data and sends a response. The
response can be a new form or some supplementary information to the excising form in the hand
terminal. The backend software has almost unlimited possibilities choosing which data is sent to
the hand terminal.

Note: The backend software has always to send a response to the hand terminal. Except if the
hand terminal is not authorized. Then the response should not be submitted! (see chapter
“Host application security”)

5.1 DataArrived event

PLServer triggers this event when receiving data from the hand terminal.
Host application handles received data and sends an answer back to the hand terminal with Send()
-method.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 22

5.1.1 DataArrived (event)

PLServer launches this event when receiving data from the hand terminal. Host application handles
received data and sends an answer back to the hand terminal with Send() method.

While DataArrived event is handling hand terminal data, PLServer cannot launch any other
DataArrived event at this time. Therefore, it’s recommended that Host application creates a
separate thread to handle hand terminal data and release DataArrived handling as fast as possible.
Multithread application is not necessary application gives fast response and only few hand terminals
are used at same time.

(event) DataArrived(long id, short frameid)

Parameters (given by PLServer)
id Hand terminal commID

frameid

The number of form defined by the user. If the frameid is -1, the
data comes from the initial screen or from a function key. This
value is defined in Send() method.

See also
Send() method

Note: During the DataArrived –event is handled any other data cannot be handled at the
same event. So it is highly recommended to free the DataArrived –handler as quick
as possible.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 23

5.1.2 Starting the data handler thread

In the multi threaded applications the data handling –thread is launched in DataArriver –handler. Only
commID and frameID parameters are passed to the DataHandled –thread. Then the DataArrived
–handler is exited immediately. This action ensures that data can be simultaneously processed and
received from the hand terminal.

Example of starting the Data Handler -thread

5.2 Forms

5.2.1 Hand terminal display area

The Hand terminal has a virtual display page of 12 x 20 characters. The actual display size) is 8 x
20 characters, so that only one third of the virtual page can be viewed at one time.

All UI-elements are addressed by positions. Position 0 is upper left corner and position 239 is
down right corner.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 24

5.2.2 Application forms

Usually the backend software has several interfaces for the user. So the software has to know what
kind of form is currently used in the hand terminal. The PLServer method SetFormID can be used
to identify every form before it is sent to the hand terminal.

The FormID is saved to the memory of the hand terminal. In every transaction when the user sends
data to the host, this FormID is sent also. The GetFormID is used to find out what kind of form user
has in the hand terminal.

5.2.3 Designing forms

Before the writing the code of the backend software, there has to be made some planning for
the forms. FormPlanner.xls –excel file is helpful tool for that. That tool can be also used to create
“screenshots” for the user manual of the backend software.

5.2.4 User Interface elements

The backend software can use several elements to create forms:

User Interface elements are:

• Text - Text can be created with TextEx –method.

• Input field - These fields may be filled by using the keyboard or the laser scanner. Fieds are
underlined. Input field is active when cursor is visible:

 Some input fields can only be filled by keyboard. See more information from NewField and
NewFieldEx method.

• Button - When active, user can only press OK button to send information to the host.

Active button is completely black. Inactive button may look like a plain text, so it would be useful
to add extra characters to beginning and end like < > or [] in order to separate texts and buttons.
Button method creates Button element to the form.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 25

The UI-elements are displayed on the form until one of the following events occurs:

• User resets device (batteries out and back in or keys:SHIFT+DEL)
• Host sends ClearForm method
• Host sends ClearCmd method

Set of UI-elements in the form

There is always one active UI-element on the hand terminal. The user can activate the desired
UI-element by pressing the arrow buttons or the active UI-element can be set from the backend
software.

Tip: There is no need to create the form if it is already at the hand terminal. This action reduces the
radio traffic and simplifies the backend software.

5.2.5 Main menu

First screen in the hand terminal is usually the main menu which is displayed after the hand terminal
connects for the first time to the backend software.

Main menu of Forms sample application

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 26

The main menu creation function:

Position defines the Button –UI element displacement on the form. MAIN_MENU_FORM is the
unique ID-number which is saved to the hand terminal with the SetFormID-method. Following
constants are found in PLConst.h –file.

5.2.6 Handling data from Main menu form

The user of the hand terminal starts the transaction by choosing one of the input fields in the Main
menu with the arrow buttons and confirms the selection with the OK-key. From the data received
the backend software has to identify the Button –pressed.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 27

In the transaction the contents of the ALL input fields are not necessary sent to the backend
software. In the Main menu –example application there are 3 locked input fields where the user
cannot type text with the keyboard. The only thing that the user can do is to activate the input
field by choosing it and pressing the OK-key to send the content of the particular input field to the
backend software.

IsData –function of the PLServer can be used to check which button is pressed. IsData returns
TRUE, if the data is from the particular input field.

BOOL IsData (long id, short pos)

Parameters

id Hand terminal commID number

pos Position of the input field (0-239)

Return value
True Data coming from pos field.
False No data coming from pos field.
See also:
GetData

5.2.7 The branching of the program

Because of the integrity of the backend software it is recommended that the creation and the data
handling of the form are coded in the separate functions.

Functions from the Forms -example

See the source code of the Forms –example at Run() –function in the DataHandlerThread.cpp.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 28

5.2.8 Clearing the UI elements

The UI-elements on the form are displayed until the device is resetted or the ClearForm –method
is called. Every time the new form is created in the hand terminals display, it is recommended to
call ClearForm –method.

If only a part of the UI-element in the form has to be removed, ClearCmd method can be used. With
ClearCmd –method it is able to remove text only and/or input fields or those content.

6 Input fields

The maximum number of input field in the form is 20. The length of the input field is can be 1 – 63
characters. If there is no text in the input field, in other words it is empty, it displays as underline
characters (_ _ _ _ _ _) in the hand terminal.

Empty input field can be completed either typing with the keyboard or scanning a barcode with a
barcode scanner. User can activate the desired input field or button by using the arrow buttons to
move the cursor on it.

All the input from the keyboard or the scanner will be displayed in the active input field. Exception
to this rule is the NewFieldEx –methods READER_DEFAULT feature. By using this feature it is
possible to display characters to the non-active input field.

The input fields can be defined so that it can not be filled with the barcode reader. l

6.1 Creating an input field

Input fields to the form are created with NewField and NewFieldEx –methods. The behavior of the
input field can be set in the parameters of these methods.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 29

BOOL NewField (long id, short pos, short field_len, short style)

Parameters
id Hand terminal commID number
pos Start position of the input field. (0 - 239)
field_len Field length
style Style bits of the input field.
Bit 0 SND_ENTER Field is sent to HOST by pressing the OK key

Bit 1 NO_SEND
Field is not sent if the SND_ALL command
occurs. Field will be sent, if the field itself gave
the SND_ALL command.

Bit 2 SND_ALL
All fields in the page, (except NO_SEND fields) are
sent to the host when the OK key is pressed.

Bit 3 FLD_LOCK
Field is locked. Field cannot be written to (used
for “button” style fields.)

Bit 4 FLD_LINE Field is underlined. _ _ _ _ _ _ _ _ _

Bit 5 FLD_READER
Field can be filled with laser- or external scanner
data.

Bit 6 FLD_ACKCLR Field is cleared if ACK is received.
Bit 7 FLD_ACTIVE Field is active (it has a cursor).
SND_ENTER and FLD_READER combinations:
SND_ENTER FLD_READER FUNCTION

0 0
Field is not sent by pressing the OK key, and
cannot be read with a laser scanner.

0 1
Field is not sent by pressing the OK key, but it
can be filled from the keyboard and with a laser
scanner.

1 0
Field is sent by pressing the OK key, but cannot
be filled with a laser scanner.

1 1
Field is sent by pressing the OK key or by reading
with a laser scanner.

Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 30

NewFieldEx

• Defines a new Input field in to the hand terminal screen.
• NewFieldEx method is same as NewField () but style bit’s OVR and READER_DEFAULT are

replaced bit’s FLD_LINE and FLD_ACKCLR.
• Field is underlined automatically.
• A maximum of 20 input fields can be defined for one form.

BOOL NewFieldEx (long id, short pos, short field_len, short style)

Parameters
id Hand terminal commID number
pos Start position of the input field. (0 - 239)
field_len Field length
style Style bits of the input field.
Bit 0 SND_ENTER Field is sent to HOST by pressing the OK

key

Bit 1 NO_SEND
Field is not sent if the SND_ALL command
occurs. Field will be sent, if the field itself
gave the SND_ALL command.

Bit 2 SND_ALL
All fields in the page, (except NO_SEND
fields) are sent to the host when the OK
key is pressed.

Bit 3 Reserved Reserved set as “0”

Bit 4 OVR

Overwrite mode. When OVR is set, and the
field becomes active, the cursor moves
to the starting position of the field. When
the cursor is in the starting position, the
previous text will be overwritten by typing.

Bit 5 FLD_READER Field can be filled with laser- or external
scanner data.

Bit 6 READER_DEFAULT

If another field is active and it has not
FLD_READER set, laser scanner is
activated and data goes to this field
automatically. Only one READER_
DEFAULT field can be defined per form.
This bit has no effect if FLD_READER bit is
not set.

Bit 7 FLD_ACTIVE Field is active (it has a cursor).
SND_ENTER and FLD_READER combinations:
SND_ENTER FLD_READER FUNCTION

0 0 Field is not sent by pressing the OK key,
and cannot be read with a laser scanner.

0 1
Field is not sent by pressing the OK key,
but it can be filled from the keyboard and
with a laser scanner.

1 0 Field is sent by pressing the OK key, but
cannot be filled with a laser scanner.

1 1 Field is sent by pressing the OK key or by
reading with a laser scanner.

Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 31

6.2 Input field reading to the application

The GetData –method returns a string from the defined input field. However the IsData -method
should be used to check if the hand terminal has just sent the data from that particular input field.
The IsData –method is no need to use if it is already known that the only data the hand terminal can
send is from that particular input field.

In this example GetData returns the string of the input field in position 47.

6.2.1 The validation of the input field contents

The user input to the input field can be any character in the characters set. So the validation of the
input data is very important.

The input field cannot validate the data input. E.g. if the input has to be between 1 and 100, the
backend software has to do the validation of the data. If the data is not within the range, the
Popmessage can be sent to the hand terminal.

The data validation example:

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 32

6.3 Sending the text to the input field

The application can send text to the input field by using FldTxt –method if the input field is already
created with NewField or NewFieldEx –functions. The input field creation function can be sent at
the same time than text input –method. If the input field contains text it will be overwritten.

BOOL FldTxt (long id, short pos, LPCTSTR txt)

Parameters
id Hand terminal commID number
pos Position of the input field. (0 - 239)
txt Text for the field.
Return value
True Command added to the send buffer successfully
False Send buffer is full

6.3.1 Modifying the existing input field

The backend software can modify the parameters of the existing input field. The application should
be designed so that the user of the hand terminal has to make as few keystrokes as possible. The
FieldCmd –function can activate the certain input field so that the user has no need to use the
arrow keys for navigation.

With the FieldCmd –function following commands are available:

• Remove the input field
• Clear the input field
• Lock the input field
• Activate the input field

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 33

Note: There can be only one FieldCmd –command with FLD_ACTIVE –flag on at the transmission
to the hand terminal. This is because of in the form there can be only one UI element active at the
time.

See the using of FieldCmd –method at the Forms sample –source code.

BOOL FieldCmd(long id, short pos, short fcmd)

Parameters
id Hand terminal commID number
pos Position of the input filed

fcmd

Bit 0
FLD_
REMOVE

Removes the field

Bit 1 FLD_CLEAR Clears the field (from locked fields also)
Bit 2 Reserved
Bit 3 FLD_LOCK Locks the field (cannot be written to)
Bit 4 Reserved
Bit 5 Reserved
Bit 6 Reserved
Bit 7 FLD_ACTIVE Field is set to active.

Return value
True Command added to the send buffer successfully
False Send buffer is full

6.3.2 Password style input fields

It is recommended to authorise the user of the hand terminal before the access is granted to the
system.

Below is an example form from the Forms -sample application. The input fields where the user
inputs the user ID and the password are shown to the user as *-characters.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 34

The backend software handles the content of the input fields as normally. SpecialCmd –method is
used to set max. 3 input fields to ”Password style” input fields.

See at the Forms-sample source code and at definition of SpecialCmd –method how to create
“Password style” input fields.

Note: Input fields are created normally with the NewField- or NewFieldEx –methods and
after that they are set to “Password style” input fields by using the SpecialCmd
–method.

7 PopMessage

The PopMessage –method is used to send informative text to the hand terminal screen without
destroying the UI-elements on the form.

All UI-elements on the hand terminal screen are hidden when the PopMessage is displayed. The
PopMessage disappears by pressing any key of the keyboard and the previous UI-elements
appears on the display.

PopMessage is an efficient way to inform the user in various situations e.g. if the user input is not
in the allowed range.

BOOL PopMessage (long id, short pos, LPCTSTR txt)

Parameters
id Hand terminal commID number
pos Start position of the button. (0 - 79)
txt Text for the screen. (May include VT and CR characters.)
Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 35

8 Sounds

The backend software can use Bell- and Beep –methods to play sound on a hand terminal. Most
common situations where sounds are used is to signal a warning or a failure to the user. It is
recommended that PopMessage is used in parallel with sounds for detailed info.

The Bell –method is used to create a short sound. With the Beep –method it is able to play a short
sequence of sounds with different pitch and duration.

9 Sending a message to hand terminal

The hand terminal is not able to receive data from the backend software if the user of the hand
terminal hasn’t started a transaction. This feature saves the battery. Usually the transaction begins
with pressing the OK- or F- keys. The radio of the hand terminal stays on until the response from
the backend software.

However it is possible to set the hand terminal so that in the defined time intervals it keeps asking
if the backend software wants to send data to the hand terminal.

9.1 Application example

The hand terminals are used in the store – warehouse environment. The clerk in the store counts
the items in the shelves and sends an order to the warehouse if needed. The clerk scans the
barcode from the item, inputs a quantity and sends an order to the backend software.

The hand terminal in the warehouse is configured to ask data from the backend software. So
next time the hand terminal in the warehouse asks the data from the application by using the
WHAT -command, the backend software relays the order to the hand terminal. The hand terminal
receives the order and signals the user with a beeping sound to notify of an incoming request. In
the display

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 36

9.1.1 What method

What –method is used to configure the hand terminal to send the “What” –query at intervals (1
s – 99 s) to the backend software. The What-query is a ”Is there any messages for me?” –like
question to the backend software.

When the hand terminal sends “What” signal, the PLServer triggers What –event instead of
DataArrived. It is recommended (but not necessary) that the application sends a response to the
hand terminal .

9.1.2 What

The hand terminal sends WHAT command (18h) to HOST every time between specified delay
seconds.

BOOL What (long id, short delay)

Parameters
id Hand terminal commID number
delay 0 – 99 seconds

If DELAY is 0, The hand terminal stops sending “WHAT” commands
Return value
True Command added to the send buffer successfully
False Send buffer is full
See also
“What” event

Hand terminal send WHAT command to HOST every time between specified delay parameter.

The hand terminal stops sending “WHAT” when the hand terminal is reset or delay parameter is
0.

Example, host command What (id,5); set HS to send “ what” code between 5 second. When Host
gives What (id,0), HS will stop sending “what” code.

9.1.3 Hand terminal behavior when “What” is sent.

Hand terminal waits answer from host after WHAT code is sent. Wait time is same as “Reception
time limit” parameter in hand terminal. Default is 1 sec.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 37

If no answer from host within Reception time limit, WHAT code resends are made as many times
specified at “Resending time” parameter. Default 3 times.

If all resends are used and still no answer from host, HS will not generate transaction failure beeps
and “F” sign. Then “WHAT” code is sent to the host next time until x seconds is expired.

9.1.4 Using “What” method instead of “Receiver” method

Some cases RECEIVER mode has been used to keep radio open and listening messages from
host. However, problem of using this method is higher battery consumption and possibility of data
loss. Also host application developing might be more complicated.

Using “What” is more reliable and simple than Receiver mode so it’s highly recommended to use
What instead of Receiver mode

Note: What-method can operate in two different ways in the hand terminal. The old style is that the
query is sent only once after a period of time. The new style is to send the queries continuously at
intervals until the backend software stops the process with What(0) -command.

Behavior of the ”What” is chosen from the menu in the hand terminal:

Settings ”What” Behavior
 (0 = New style)
 (1 = Old style)

10 Base station connections

The base station is needed for communication between the hand terminal and the backend
software. The base station transmits the signals to and from the hand terminals and relays them to
the backend system.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 38

10.1 Serial port connection

The base station connects to the backend software thru the RS232-port. Default settings for the
RS232-port are 19200,8,n,1 and it is connected to the COM-port in PC with the special cable from
the Nordic ID.

The backend software needs to open and connect to the COM-port with the PLServers connect
-method.

The application is connected to PC serial port by using the Connect -method.

BOOL Connect(short com_port):

Parameters:
<com_port> COM port number of the HOST PC-
Example:
Connect(1) //Connect to COM 1
Connect(0) //Disconnect
Return value:
True if connected successfully
False if port not exist or port is already in use.

The opened COM-port can be seen in the PLServer control window.

COM-port opened successfully.

Unsuccessful opening of the COM-port.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 39

10.2 Connecting several base stations

If the working area cannot be covered with only one base station, more base stations can be
connected to the backend system by using the Local Area Network (LAN).

10.2.1 Device servers

Devices that transform the serial-communication to TCP/IP –communication are called Device
servers.

There are several device server brands and manufacturers and those should also work with the
RF600 base station. Usually those are server type of devices which means that backend software
creates the TCP/IP connection to the device. In some cases the device server may work as client-
type, which mean that they make the connection to the backend software.

The backend software creates the TCP/IP connection by using the PLServer –method.

This method creates a network session between device server and PLServer. Up to 255 server
connections can be made simultaneously. This method starts connection procedure and returns
immediately.

If network adapter is not available, PLServer tries to reconnect in to it automatically between 10
seconds until DisconnectSerialServer has been called or application closes.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 40

short ConnectToSerialServer(LPCTSTR addr, short port):

Parameters
addr String value of TCP/IP address of the device server.
port Port number of the network adapter (short value)
Example
retval = ConnectToSerialServer(“192.168.0.1”, 7001);
if (retval == -1) <Cannot connect to serial server>
else <connection succesful. Save retval as a session number>

Return value
Return value indicates the session number.
If -1, All 255 servers has been used.
See also
DisconnectSerialServer
SerialServerMessage (event)

The successful connection to the Device server is indicated with a red text shown below:

The number after the ”Serial Servers:” –text indicates how many PLServers are connected to the
application.

Usually the TCP/IP connections are created when the application starts up. The PLServer
automatically closes the connection when the application shuts down.

The PLServer can act like a server and wait for connections from clients. When the Device server
has configured to act like a client, it has to be configured also to contact to the PLServer.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 41

10.2.2 StartServer

Starts to listen client connections to the specified TCP/IP port

BOOL StartServer(short port):

Parameters:
<port> Port number where Clients connects
Example:
StartServer(1024)
//Starting server and allow connections to 1024

Return value:
True If server started succesfully
False If the server cannot be started
See also
StopServer

Green clients –text is shown in the PLServer window, when the StarServer –method is called. The
number after the Clients: states the number of clients connected.

11 Receiving and Transmitting RAW data

PLServer contains the functions of receiving and sending raw data over the TCP/IP network. The
raw data can be used with third party hardware e.g. network printer or GPS-receiver.

First thing is to create TCP/IP connection by using the ConnectToSerialServer –method. This
function returns the device ID.

Example: Creating TCP/IP –connection to receive GPS-data.

The PLServer RawDataArrived -event (with parameters connID, received data and data length) is
triggered when data is sent by the third party hardware.

SendRawData –method can be used to sent raw data to third party device.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 42

12 RF6xx Application Router

The RF6xx Application Router is a Windows application which handles several functions that
system integrator doesn’t have to implement in the host application. It helps system developers
who don’t want to use PLServer in their business application. Usually, it is quite hard programming
job for the non PLServer developer to implement roaming, resend handling, CRC checking and
other functionalities that RF6xxAppRouter (PLServer) already has.

In some cases, there is need to use several separate host applications but still use same base
stations. The user of the hand terminal can select host application from the menu. The Application
Router and the remote host applications are connected together by using a TCP/IP connection.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 43

12.1 The RF6xx Application Router features

• Handling the base stations and the remote host connections.
• Filters received messages that only one message is passed to the remote host.
• Controlling the hand terminal access rights. Possible to define that the specific hand terminal

can use only the specific host applications.

• Main menu of the Application Router can be opened by pressing defined (hot) key. (Like:

“F10”)

• Up to six (6) remote host applications can be defined.

• Notifies the hand terminal user when the remote host application is not available.

• Supports the RF600 and RF650Direct hand terminals

• connList.txt Connection list file for defining the base station and the remote host

connections.

• appList.txt Application list file for specifying remote host applications and the hand terminal
access rights.

12.2 System operation

The RF6xxAppRouter program can be set to start automatically when PC is started. While starting,
the RF6xxAppRouter reads connList.txt file and opens the connections of the base station and
the remote hosts. After connections, the RF6xxAppRouter opens appList.txt file which specifies
remote host applications and hand terminal access rights. The appList.txt consist also the text for
the hand terminal display when main menu is opening and text when remote host is not available.

When the hand terminal user connects first time to the AppRouter, main menu of the available host
applications will be appear in to the hand terminal screen. The hand terminal user can select the
application to use. When selected, the hand terminal goes to the initial state. Next sending with the
hand terminal will be routed to the remote host. The AppRouter will remember routing path as long
as the user presses “main menu” key (Like: “F10”).

Note: When making changes to the connList.txt and appList.txt, RF6xxAppRouter program
must be restarted.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 44

12.3 Format of connList.txt

12.3.1 Serial Port Connection

Open the serial port connection for the RF600 base station. Only one serial port connection at the
time is possible.

[COM:<port number>]

Example:
COM:1 //Opens COM1

12.3.2 Start server

Listen client TCP/IP connections to the specific port.

[SERVER:<port to listen>]

Example:
SERVER:1200

12.3.3 Client connection.

Create TCP/IP connection to the specific address and port.

[CLIENT:<tcp/ip_addr or name:port]

Example:

CLIENT:194.100.186.39:10101
CLIENT:DemoPC:7001

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 45

12.3.4 HOST application connections

Create connection to the remote host. The remote host must be in TCP/IP server mode for listening
incoming connections to the specific port.

[HOST:<tcp/ip addr or name:port:<App name>]

NOTE: App name must be same than specified in appList.txt APPLICATIONS section

Example:

HOST:127.0.0.1:500:PLAPP
HOST:DemoPC:1100:FAST_INVENTORY

12.4 Format of appList.txt

12.4.1 List of Remote host applications

[APPLICATIONS:<App_1_name>:<App_2_name>:<App_3_name>:<App_4_name>...]

• App_x_name must be same than name when creating remote host connection in connList.txt
• Up to 6 applications can be routed.
• Application names are printed in the main menu where the user can select.

Example:

APPLICATIONS:PLAPP:FAST_INVENTORY

12.4.2 Hand terminal access right list

[HS_ID:<ID nro>:<App number>]

• Hand terminal ID which only have access to the system.
• If no HS_ID entries, all HS have access to all applications.
• App number specifies access right to available applications. In same order than in APPLICATION

section.
• If HS entries but no correct HS_ID in the list, then no response from AppRouter.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 46

Example:

HS_ID:12345:1 This HS can only use app1 (PLAPP)
HS_ID:44444:12 This HS can use app1 and app2 (PLAPP and FAST_INVENTORY)
HS_ID:23022:2 This HS can use only app2 (FAST_INVENTORY)

12.4.3 Main menu item text

[MAIN_MENU_STRING:<”STRING”>]

• When RF6xxAppRouter receives this string, the main menu of the applications will be
opened.

• <STRING> can be any which comes from the hand terminal initial screen or from F-key as a
plain string.

Example:

MAIN_MENU_STRING:F10
//When HS user sends F10, the main menu will be opened

12.4.4 Main menu header text

MAIN_MENU_HEADER:<”Header string”>

• This string will be displayed in the main menu form as a header text. (Max 20 char)

Example:

MAIN_MENU_HEADER:* RF600 Demos *

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 47

12.4.5 Host down notification text

HOST_DOWN_TEXT:<”Host down text”>

• Host down text will be displayed as a PopMessage in the hand terminal screen when
connection to the specific host has been lost.

Example:

HOST_DOWN_TEXT: Host down! Try again later

13 Host application samples on the CD

The product manual CD contains the demo applications with source codes. The applications
demonstrate different functionalities of the PLServer. The examples are made with VB6.0, VC++
6.0, VB NET 2003 or VC++ 2003.

The source codes with working solutions are offered to study for the application developer.

Most of the applications offer three alternatives for connecting to the base station.

Choose:

• Serial Connection, if the base station is connected to the COM-port of the PC

• StartServer, if the base station is connected to the DeviceServer that is configured to client-
mode. Type the port number and press “StartServer” –button. There has to be TCP/IP –address
and -port of the PLServer computer configured in the Device server.

• Serial Server Connection, if the Device server is configured to host. Type the TCP/IP –address
and –port in the Serial Server Connection –dialogue. This method allows to connect several
Device server.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 48

13.1 Forms sample

In the main menu of the Forms sample –application the user can choose the desired function by
using the arrow keys. This main menu looks like typical main menu of the backend software.

Forms sample is a multithreaded application and it is created with Visual C++. The basic structure
of this program can be used when creating the actual backend software.

13.1.1 Calculator

This is simple two input calculator. The user input value1 and value2 with the keyboard and then
chooses the operand below the values. The result is shown after the “=” –character.

This demonstrates different types of input fields. Value1 and Value2 input fields does not send data
when the user presses the ok-key.

When the user chooses the operand by activating it and pressing the ok-key, the input text of the
Value1 and Value 2 input fields are sent to the backend software.

The operation buttons (+,-,x and /) are created by using the NewFieldEx and FldTxt –methods with
SND_ALL flag ON. This is because of the content of the Value1 and Value2 –input fields has to be
sent simultaneously with the operand to the host.

13.1.2 Auto Scanning

The backend software can ”press” the button in the hand terminal. By using the SpecialCmd
–method it is able to define the key which is ”pressed” immediately after the hand terminal has
received response from the backend software.

The example application is meant for user to read barcodes continuously and quick. When the
application receives the code it immediately sends command which activates the barcode reader
again. The user doesn’t need to press scan-key to activate scanner.

The READER_DEFAULT flag of the NewFieldEx -method allows activating the barcode scanner
even if the input field is not active. E.g. if the “Start” button in the application is active, the reader
activates with the scan-key.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 49

After the hand terminal has read the barcode, it is sent to the application. The application reply
activates the barcode scanner without a user entry.

If the barcode scanner is held in front of the barcode, it is read continuously until the barcode is
removed or the user presses any key.

The number of successful scans is also displayed.

Note: If more than one hand terminal is using the same form simultaneously, the displayed number
is sum of the all hand terminals scans.

13.1.3 User authorization form

This form is example of input fields that are defined with SpecialCmd –method. The characters of
the password are displayed as * -characters in the hand terminal display.

After the UserID and Password –fields are sent to the host, it replies by using the PopMessage
and displays the actual content of the input fields, clears the input fields and sets the UserID –field
active by using the FieldCmd –method.

13.2 FastInventory

The Fast Inventory is a simple application for collecting data to the specific text file using the RF6xx
hand terminal.

Screenshot of Fast Inventory Application:

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 50

When the hand terminal connects first time to the FastInventory program, following screen appears
in to the hand terminal screen:

The hand terminal user can type count and scan code of product: After scanning the code, data
will be transmitted to the host and save to the specific text file. Fields are separated by semicolon
(;) for example: (code; count; date; hand terminal ID)

023942874102; 15; 20.9.1999 9:07:55; 3564

Item fields are separated by semicolon which is easy to import to Excel, Access, etc.

This information at the input fields is sent to the backend software after successful barcode reading
or OK-key entry when Code-field is active.

READER_DEFAULT –flag is set to the Code –field. This means that the information of the barcode
scanning is displayed to the Code –field even if it is not active.

The FastInventory example application is made with Visual Basic 6.0.

13.3 WhatTest

This is a simple What –method example. By using the What –method the hand terminal is configured
to send What –event in 5 second intervals. The response is the content of the edit –box and is sent
to the input field on the hand terminals display.

The hand terminal enters to the sleep mode after 30 seconds of inactivity. However it keeps on
sending the What –event as in normal mode.

If the Send Bell is checked at the display of the hand terminal, it signals with a beep and turns on
the display while on sleep.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 51

Note: Set the ”What behavior” to 0 (New style) at the settings menu of the hand terminal.

WhatTest is a Visual Basic 6.0 application.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 52

13.4 SlideControl

The Slide control application makes hand terminal to work as a remote control of the power point
presentation program.

Only one hand terminal can control the PPT slides at the time.
The hand terminal serial number must be in the “Serial number of the remote control:” edit box.

Note: Slide control program generates key press events to the operating system.
Therefore, all keystrokes from hand terminal (Back, next...) app goes always to the currently active
application.

Setting up Slide Control:

1. Open Slide Control program

2. Connect to the Base station

3. Type hand terminal serial number to “Serial number of the remote control” edit box.

4. Minimize Slide control

5. Activate PowerPoint program

6. Start using Slide Control with the hand terminal.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 53

13.5 Software wedge

Software wedge program receives data from the hand terminal and sends characters to the active
window as if typed at the keyboard. Up to 63 characters can be typed or read with scanner to the
input field of the hand terminal.

Data will be sent to the host after scanning barcode or pressing OK key.
Line feed are added automatically to the end of the scanned code.

Setting up Software Wedge:

1. Open Software Wedge program

2. Connect to the Base station

3. Minimize Software Wedge

4. Open and activate any program which wanted to receive keystrokes. (word, excel, text

editor...)

5. Start using Software wedge with the hand terminal.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 54

13.6 PLMultiThread

The PLMultithread is a multithreaded application that is made with Visual C++ 6.0. It demonstrates
the long data handling times and the use of the What –method.

Note: Set the ”What behavior” as New style

The handling of the PLServers DataArrived- and What -events are at the PLMultiThreadDlg.cpp
–file. The actual data from the hand terminal is handled in the other thread (DataProcessing.cpp).

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 55

13.7 ScanAndSend

This demo software creates 10 input fields in the hand terminal display. The data at the input
fields is sent to the backend software after the input to the last input field. This sends all the data
in the input fields to the backend software which displays it on the Listbox of the ScanAndSend
–application. After receiving the data the backend software clears the hand terminal screen and
sets the view to the top of the form by using the SetView(0)-method.

ScanAndSend is programmed by using Visual Basic.NET

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 56

14 APPENDIX A PLServer methods and events

The Nordic ID RF6xx driver control is a 32-bit Windows ActiveX control (PLServer.ocx), which
controls the data communication between the base station and the HOST application.

PLServer makes HOST system software development easy because it does all the dirty work for
you. The use of PLServer provides a lot of functionality and code that you don’t have to write or
debug. All you have to do is to figure out the entry points and how to use them.

You can use PLServer control in applications that are developed with Visual Basic , Visual C++,
Excel, Access , FoxPro, Delphi and many more products who support ActiveX controls.

Note: There are some undocumented methods that are not useful for software developers. It is
recommended to use only methods documented in this manual.

14.1 Base station connection methods

14.1.1 Connect

Serial port connection for the RF600 base station.

BOOL Connect(short com_port):

Parameters:
<com_port> COM port number of the HOST PC-
Example:
Connect(1) //Connect to COM 1
Connect(0) //Disconnect
Return value:
True if connected successfully
False if port not exist or port is already in use.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 57

14.1.2 StartServer

Starts to listen client connections to the specified TCP/IP port

BOOL StartServer(short port):

Parameters:
<port> Port number where Clients connects
Example:
StartServer(1024)
//Starting server and allow connections to 1024

Return value:
True If server started succesfully
False If the server cannot be started
See also
StopServer

14.1.3 StopServer

Disconnect all client connections.
This is done automatically when host application closed.

void StopServer():

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 58

14.1.4 ConnectToSerialServer

Create a network session between device server and PLServer. Up to 255 server connections
can be made simultaneously. This method starts connection procedure and returns immediately.
If network adapter is not available, PLServer tries to reconnect in to it automatically between 10
seconds until DisconnectSerialServer has been called or application closes.

short ConnectToSerialServer(LPCTSTR addr, short port):

Parameters
addr String value of TCP/IP address of the device server.
port Port number of the network adapter (short value)
Example
retval = ConnectToSerialServer(“192.168.0.1”, 7001);
if (retval == -1) <Cannot connect to serial server>
else <connection succesful. Save retval as a session number>

Return value
Return value indicates the session number.
If -1, All 255 servers have been used.
See also
DisconnectSerialServer
SerialServerMessage (event)

14.1.5 DisconnectSerialServer

Disconnect the network adapter session.
When application closes, all TCP/IP connections are closed automatically.

void DisconnectSerialServer (short ss_id)

Parameters
ss_id Session number returned by ConnectToSerialServer method
See also
ConnectToSerialServer
SerialServerMessage (event)

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 59

14.1.6 GetSerialSvrStatus

Return current status of the connection.

short GetSerialSvrStatus (short connID)

Parameters
connID Session number returned by ConnectToSerialServer method
Return value
0 Not in use
1 Trying connect
2 Connected
See also
ConnectToSerialServer
SerialServerMessage (event)

14.1.7 SerialServerMessage (event)

PLServer launches SerialServerMessage event which includes text information about the specific
session.
PLServer uses Windows sockets and therefore msg might contain error codes of windows sockets.
See Appendix C of Windows socket error codes.

(event) SerialServerMessage(short ss_id, LPCTSTR msg):

Parameters: (given by PLServer)

ss_id Session number of the connection. Returned by
ConnectToSerialServer method

msg
String buffer which contains the text description about the
message.

Return value
Return value indicates the session number.
If -1, All 255 servers has been used.
See also
ConnectToSerialServer ()
DisconnectSerialServer()

socket_error_codes.htm

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 60

14.2 User Interface elements

14.2.1 Text and TextEx

Define a text string to specific position in to the hand terminal screen.
Note: Text and TextEx methods are same. Use TextEx instead of Text in VB.NET applications.

BOOL TextEx (long id, short pos, LPCTSTR txt)

Parameters
id Hand terminal commID number
pos Start position of the text. (0 - 239)
txt Text string to be displayed.
Return value
True Command added to the send buffer successfully
False Send buffer is full

18.2.2 Button

Create a “button” style field. The Button method will create a locked field filled with text. Field text
will be sent to the HOST by pressing the OK key. This method is suitable for menu creation.

SND_ALL and NO_SEND functions are disabled. (Please see NewField() method)
To create a button field with SND_ALL and NO_SEND functions, use the NewField() and FldTxt()
methods instead of the Button() method.

BOOL Button (long id, short pos, LPCTSTR txt)

Parameters
id Hand terminal commID number
pos Start position of the button. (0 - 239)
txt Text for the button.
Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 61

14.2.3 NewField

Define a new Input field in to the hand terminal screen.
A maximum of 20 input fields can be defined for one form.

BOOL NewField (long id, short pos, short field_len, short style)

Parameters
id Hand terminal commID number
pos Start position of the input field. (0 - 239)
field_len Field length
style Style bits of the input field.
Bit 0 SND_ENTER Field is sent to HOST by pressing the OK key

Bit 1 NO_SEND
Field is not sent if the SND_ALL command
occurs. Field will be sent, if the field itself gave
the SND_ALL command.

Bit 2 SND_ALL All fields in the page, (except NO_SEND fields) are
sent to the host when the OK key is pressed.

Bit 3 FLD_LOCK Field is locked. Field cannot be written to (used
for “button” style fields.)

Bit 4 FLD_LINE Field is underlined. _ _ _ _ _ _ _ _ _

Bit 5 FLD_READER Field can be filled with laser- or external scanner
data.

Bit 6 FLD_ACKCLR Field is cleared if ACK is received.
Bit 7 FLD_ACTIVE Field is active (it has a cursor).
SND_ENTER and FLD_READER combinations:
SND_ENTER FLD_READER FUNCTION

0 0 Field is not sent by pressing the OK key, and
cannot be read with a laser scanner.

0 1
Field is not sent by pressing the OK key, but it
can be filled from the keyboard and with a laser
scanner.

1 0 Field is sent by pressing the OK key, but cannot
be filled with a laser scanner.

1 1 Field is sent by pressing the OK key or by reading
with a laser scanner.

Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 62

14.2.4 NewFieldEx

Define a new Input field in to the hand terminal screen. NewFieldEx method is same as NewField()
but style bit’s OVR and READER_DEFAULT are replaced bit’s FLD_LINE and FLD_ACKCLR. Field
is underlined automatically. A maximum of 20 input fields can be defined for one form.

BOOL NewFieldEx (long id, short pos, short field_len, short style)

Parameters
id Hand terminal commID number
pos Start position of the input field. (0 - 239)
field_len Field length
style Style bits of the input field.

Bit 0 SND_ENTER Field is sent to HOST by pressing the OK
key

Bit 1 NO_SEND
Field is not sent if the SND_ALL command
occurs. Field will be sent, if the field itself
gave the SND_ALL command.

Bit 2 SND_ALL
All fields in the page, (except NO_SEND
fields) are sent to the host when the OK key
is pressed.

Bit 3 Reserved Reserved set as “0”

Bit 4 OVR

Overwrite mode. When OVR is set, and the
field becomes active, the cursor moves
to the starting position of the field. When
the cursor is in the starting position, the
previous text will be overwritten by typing.

Bit 5 FLD_READER Field can be filled with laser- or external
scanner data.

Bit 6 READER_DEFAULT

If another field is active and it has not FLD_
READER set, laser scanner is activated
and data goes to this field automatically.
Only one READER_DEFAULT field can be
defined per form. This bit has no effect if
FLD_READER bit is not set.

Bit 7 FLD_ACTIVE Field is active (it has a cursor).
SND_ENTER and FLD_READER combinations:
SND_ENTER FLD_READER FUNCTION

0 0 Field is not sent by pressing the OK key, and
cannot be read with a laser scanner.

0 1
Field is not sent by pressing the OK key, but
it can be filled from the keyboard and with a
laser scanner.

1 0 Field is sent by pressing the OK key, but
cannot be filled with a laser scanner.

1 1 Field is sent by pressing the OK key or by
reading with a laser scanner.

Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 63

14.2.5 PopMessage

Define a message which is displayed in the hand terminal screen as long as any key is pressed.
Only one PopMessage method call can be included in the send buffer.

BOOL PopMessage (long id, short pos, LPCTSTR txt)

Parameters
id Hand terminal commID number
pos Start position of the button. (0 - 79)
txt Text for the screen. (May include VT and CR characters.)
Return value
True Command added to the send buffer successfully
False Send buffer is full

14.2.6 Ack

This method adds the Ack command to the send buffer. Ack method can be used at NewField
command. (Please see style bits).

BOOL Ack (long id)

Parameters
id Hand terminal commID number
Return value
True Command added to the send buffer successfully
False Send buffer is full
See also:
NewField

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 64

14.2.7 SpecialCmd

SpecialCmd defines special functionalities to the hand terminal.

BOOL SpecialCmd (long id, short type, long data)

Parameters
id Hand terminal commID number
Type

Bit 0

If this bit is set, the hand terminal will emulate the one key press.
The key is defined in parameter data
SpecialCmd(12000, 0x1 , 0x06)
emulates a BAR button press.

Bit 1

If this bit is set, the hand terminal sends keystrokes directly to the
HOST. The HOST application can define the keys with parameter
data that sends the keystrokes to the HOST.
Example: UP and DOWN keys will send keystokes to the HOST:
SpecialCmd(12000, 0x2 , 0x600)
This function is valid as long as user resets the device or
HOST send SpecialCmd where Bit 1 is not set. When the user
presses the key which is defined to send keystroke, the hand
terminal sends SPC_MSG to the HOST and data can be read by
GetSpecialData method. Appropriate key value is returned. (see
list below). After that the hand terminal will wait a response from
the HOST.

Bit 2

Password style for input field. Three input fields can be defined
as a password style field. The Hand terminal user can only see ‘*’
asterix chars when typing to the input field.
Example: Input fields in position 20 (hex 14) and 40 (hex 28) will
be defined as a password style field.
SpecialCmd(12000,0x4,0x00FF1428)

Bit 3 Reserved
Bit 4 Reserved
Bit 5 Reserved
Bit 6 Reserved
Bit 7 Reserved

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 65

Type

Bit 0 Bit 1 Bit 2
Bit
3

Bit
4

Bit
5

Bit
6

Emulates
the key
press

Hand
terminal
sends
keystrokes
to the
HOST

Password
style input
fields

Data

Key value
(decimal)
F1 = 1
F2 = 2
F3 = 3
F4 = 4
F5 = 5
BAR = 6
DEL = 7
DOT = 8
MINUS = 9
UP = 10
DOWN = 11
OK = 12
0 = 13
1 = 14
2 = 15
3 = 16
4 = 17
5 = 18
6 = 19
7 = 20
8 = 21
9 = 22

Key (return
value)
See bits
below:

Positions of
the password
input fields.
255 = not
defined

Bit 0 F1 (1)
First
Password
input field
position.
0xff = not
defined

Bit 1 F2 (2)

Bit 2 F3 (3)

Bit 3 F4 (4)

Bit 4 F5 (5)

Bit 5 BAR (6)

Bit 6 DEL (7)

Bit 7 DOT (8)

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 66

Bit 8 MINUS (9)
Second
Password
input field
position
0xff = not
defined

Bit 9 UP (10)

Bit 10 DOWN (11)

Bit 11 OK (12)

Bit 12 0 (13)

Bit 13 1 (14)

Bit 14 2 (15)

Bit 15 3 (16)
Bit 16 4 (17)

Third
Password
input field
position.
0xff = not
defined

Bit 17 5 (18)
Bit 18 6 (19)
Bit 19 7 (20)
Bit 20 8 (21)
Bit 21 9 (22)
Bit 22 x
Bit 23 x
Bit 24 x
Bit 25 x
Bit 26 x
Bit 27 x
Bit 28 x
Bit 29 x
Bit 30 x
Bit 31 x
x = not used

Return
value
True Command added to the send buffer successfully
False Send buffer is full
See also
GetSpecialData

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 67

14.2.8 GetSpecialData

This method reads special data sent by the hand terminal.

short GetSpecialData (long id, short type)

Parameters
id Hand terminal commID number
type Type of the special data.

Return value
Value (0- 255) from the hand terminal from specific type (operation).
-1 if there is no data received from specific type.

See also:
SpecialCmd

14.3 Form and UI-element commands

14.3.1 ClearForm

Clears all existing texts and fields from the display and sets view to row 0.

BOOL ClearForm (long id)

Parameters
id Hand terminal commID number
Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 68

14.3.2 ClearCmd

Partially clears the display of any text or field

BOOL ClearCmd(long id, short cmd, short start, short stop)

Parameters
id Hand terminal commID number

cmd

Bit 0 CLEAR_TXT Removes text from <start> to <stop>
Bit 1 CLEAR_FLD Removes fields from <start> to <stop>

Bit 2 CLEAR_FLDDATA
Clears the field data from <start> to
<stop>

Bit 3-7 Reserved
start start position of the display (0-239)
stop stop position of the display (0-239)
Return value
True Command added to the send buffer successfully
False Send buffer is full

14.3.3 FieldCmd

Changing function of existing input filed

BOOL FieldCmd(long id, short pos, short fcmd)

Parameters
id Hand terminal commID number
pos Position of the input filed

fcmd

Bit 0
FLD_
REMOVE

Removes the field

Bit 1 FLD_CLEAR Clears the field (from locked fields also)
Bit 2 Reserved
Bit 3 FLD_LOCK Locks the field (cannot be written to)
Bit 4 Reserved
Bit 5 Reserved
Bit 6 Reserved
Bit 7 FLD_ACTIVE Field is set to active.

Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 69

14.3.4 FldTxt

Fill (presets) the field with the text. If the length of txt is more than the length of the field, the excess
txt will be corrupted. If the field is already filled with text, it will be replaced with new text.

BOOL FldTxt (long id, short pos, LPCTSTR txt)

Parameters
id Hand terminal commID number
pos Position of the input field. (0 - 239)
txt Text for the field.
Return value
True Command added to the send buffer successfully
False Send buffer is full

14.3.5 SetView

Sets the display view to be started from specific line. This method may need to use in situations
where hand terminal screen has been scrolled downwards because only 8 lines are visible in the
display at the time and virtual form size is 12 lines.

BOOL SetView (long id, short row)

Parameters
id Hand terminal commID number

row View line number (0-3). If this value is greater than 3, then this method will be
ignored by the hand terminal.

Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 70

14.3.6 SetFormID

This method defines a specific ID number which describes the form. This method is useful if the
HOST application uses several different forms on the hand terminal.
Up to 65535 different form ID:s can be defined.

The formID value is stored in the Hand Terminal memory. The Hand Terminal sends this value every
time to the HOST.

If formID is defined to 0 or Hand Terminal is resettled, then Hand Terminal doesn’t send formID
value to the HOST.

Other technique for identifying different forms is frameid which is defined in Send method.
DataArrived event passes frameid value to the application. Advantage of using SetFormID instead
of frameid is that Function key press actions can be connected to the specific form.

In the HOST application, this method can be called just before Send method.

FORM_ID is not sent by the Hand Terminal if:

• FORM_ID is defined to 0
• Hand Terminal is resettled

BOOL SetFormID (long id, short formID)

Parameters
id Hand terminal commID number
formID User defined value 0 - 65535. 0 = not used
Return value
True Command added to the send buffer successfully
False Send buffer is full
See also
GetformID

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 71

14.3.7 GetFormID

If form ID has been defined by SetFormID method and after the data has sent from the hand
terminal, the HOST application can read received form ID using this method and then application
can determine the actions of data.
In the HOST application, this method can be called in handle of DataArrived event.

FORM_ID is not sent by the Hand Terminal if:

• FORM_ID is defined to 0
• Hand Terminal is resettled

short GetFormID (long id)

Parameters
id Hand terminal commID number
formID User defined value 0 - 65535. 0 = not used
Return value
The number of the form defined by SetFormID method.
See also
SetformID

14.3.8 What

The hand terminal sends WHAT command (18h) to HOST every time between specified delay
seconds.

BOOL What (long id, short delay)

Parameters
id Hand terminal commID number

delay 0 – 99 seconds
If DELAY is 0, The hand terminal stops sending “WHAT” commands

Return value
True Command added to the send buffer successfully
False Send buffer is full
See also
“What” event

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 72

“What” functionality:
 (HS=Hand Set)
When the host gives “WHAT” command to the HS:

HS will send “What” code every time between specified time.
For example, host command What (5); set HS to send “WHAT” code between 5 second. “What”
event fires in PLServer every time. When Host gives What (0), then HS will stop sending “what”
code.

Hand terminal behavior when WHAT code is sent.

Hand terminal waits answer from host after WHAT code is sent. Wait time is same as “Reception
time limit” parameter. Default 1 sec.

If no answer from host within Reception time limit, WHAT code resends are made as many times
specified at “Resending time” parameter. Default 3 times.

If all resends are used and still no answer from host, HS will not generate transaction failure beeps
and “F” sign. Then “WHAT” code is sent to the host next time until x seconds is expired.

Note:
The What -method in Nordic ID RF-seriex can be set to work in two different ways. The “old style”
RF6xx käsipäätteissä on What metodille kaksi eri toiminta tapaa. Aikaisemmin What metodi toimi
siten että käsipääte lähetti What:n vain kerran määrätynajan kuluessa. Nyt uudella toimintatavalla,
käsipääte lähetää What:n aina määrätynajan välein kunnes tausta pysäyttää What(0) komennolla.

Käsipäätteistä voidaan valita toiminta tapa sisäisestä valkiosta:
The behaviour of ”What” can be set from the build-in menu of the hand-terminal:
Settings ”What” Behavior

(0 = New style)
(1 = Old style)

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 73

14.3.9 What (event)

“What” event is fired when hand terminal sends “What” code.

(event) What(long id)

Parameters (given by PLServer)
id Hand terminal commID
See also
What () method

14.3.10 Send

This method will send the defined commands to the Hand Terminal.

BOOL Send (long id, short frameID)

Parameters
id Hand terminal commID number

frameID
The number of form defined by the user. If frameid is -1 , the
previously defined frameid is valid.

Return value
True Data are beginning to send to the hand terminal.
False Data is already under sending.

14.3.11 DataArrived (event)

PLServer launches this event when receiving data from the hand terminal.
Host application handles received data and sends an answer back to the hand terminal with Send(
) method.

When DataArrived event is handling hand terminal data, PLServer cannot launch any other
DataArrived event at this time.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 74

Therefore, it’s recommended that Host application creates a separate thread to handle hand
terminal data and release DataArrived handling as fast as possible. Multithread application is not
necessary application gives fast response and only few hand terminals are used at same time.

(event) DataArrived(long id, short frameid)

Parameters (given by PLServer)
id Hand terminal commID

frameid
The number of form defined by the user. If the frameid is -1, the
data comes from the initial screen or from a function key. This
value is defined in Send() method.

See also
Send() method

14.3.12 DataFromHsField (event)

This event offers a string from a specific Hand Terminal, from a specific form and from a specific
position. DataFromHsField is launched as many times as there is input field contents received from
the hand terminal.

After all DataFromHsField handles, DataArrived event is launched.

Note that this event is launched only if SetNotify (TRUE) is called.

Note: For the integrity of the backend system it is recommended to use only DataArriver –event for
data handling.

(event) DataFromHsField(long id, short frameid, short pos, LPCTSTR data, short data_
len)

Parameters (given by PLServer)
id Hand terminal commID

frameid
The number of form defined by the user. If the frameid is -1,
the data comes from the initial screen or from a function key.
This value is defined in Send() method.

Pos Position of the input field. (0 - 239)
data Text string from the input field
data_len Length of the string in bytes
See also
SetNotify()
(event) DataArrived()

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 75

14.3.13 SetNotify

SetNotify allows DataFromHsField event to launch when hand terminal sends an input field data.

void SetNotify (BOOL bNewValue)

Parameters
bNewValue TRUE allows DataFromHsField to launch.
See also
(event) DataFromHsField()

14.4 Sound methods

14.4.1 Bell

Generates a single beep. When hand terminal receives message from host it will beep as default.
Adding Bell method will give extra beep.

BOOL Bell (long id)

Parameters
id Hand terminal commID number
See also
Beep
Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 76

14.4.2 Beep

Generate a specific length of beep and delay.

BOOL Beep (long id, short length, short delay)

Parameters
id Hand terminal commID number

length
Beeper is ON 10 x length milliseconds. (eg. value 100 = 1
seconds)

delay Beeper is OFF 10 x delay milliseconds.
Example
“S.O.S tone”
Beep(12000, 5, 10); //Beep 50ms ON and 100 ms OFF
Beep(12000, 5, 10); // “S”
Beep(12000, 5, 30);
Beep(12000, 15, 10); // 150ms ON and 100ms OFF
Beep(12000, 15, 10); // “O”
Beep(12000, 15, 30);
Beep(12000, 5, 10);
Beep(12000, 5, 10); // “S”
Beep(12000, 5, 10);

Return value
True Command added to the send buffer successfully
False Send buffer is full

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 77

14.5 Data receiving

14.5.1 GetData

Return a string from the specific input field position (0-239)

BSTR GetData (long id, short pos)

Parameters
id Hand terminal commID number
pos Position of the input field (0-239)
Return value
Basic String. A pointer to a null-terminated Unicode character array that is
preceded by a 4-byte length field.
See also:
IsData

14.5.2 IsData

This method will return TRUE if data is coming from pos.

BOOL IsData (long id, short pos)

Parameters
id Hand terminal commID number
pos Position of the input field (0-239)
Return value
True Data coming from pos field.
False No data coming from pos field.
See also:
GetData

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 78

14.5.3 GetExtraID

This method returns Extra ID of the Hand Terminal. Extra ID value can be defined in to the hand
terminals

short GetExtraID (long id)

Parameters
id Hand terminal commID number
Return value
Extra ID number (0 - 255)

14.5.4 GetMessageNumber

This method returns Message Number of the Hand Terminal.

short GetMessageNumber (long id)

Parameters
id Hand terminal commID number
Return value
Message number (0 - 15)

14.5.5 GetRSSI

This method returns received signal strength of message.

short GetRSSI (long id)

Parameters
id Hand terminal commID number
Return value
RSSI level of the last received message. (70 - 140)

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 79

14.5.6 GetLastFrameID

This method returns frame id from the last received message.

short GetLastFrameID (long id)

Parameters
id Hand terminal commID number
Return value
This method returns last sended frameid [Send() method parameter 2].

14.5.7 GetReceiveBuffer

This method allows HOST application to get raw data frame sent by hand terminal.

short GetReceiveBuffer (long id, short FAR* data)

Parameters
id Hand terminal commID number
data Data frame from the hand terminal
Return value
Length of the data in bytes.
See also:
RF6xx communication protocol

14.5.8 GetBatteryLevel

This method allows HOST application to monitor battery level of the hand terminal.
Example, the HOST application can generate the warning messages to the hand terminal if battery
level is too low.

short GetBatteryLevel(long id)

Parameters
id Hand terminal commID number
data Data frame from the hand terminal
Return value
Battery level in %. (8 fixed levels: 0,10,20,40,50,70,80,100)

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 80

14.5.9 GetCRCValue

Return CRC value of the last received message.

long GetCRCValue(long id)

Parameters
id Hand terminal commID number
Return value
Long value of CRC (0-65535)

14.5.10 GetHsIdString

Return the hand terminal commID value as a string format. Can be used for indicating is hand
terminal communicated or not since application startup.

BSTR GetHsIdString(long id)

Parameters
id Hand terminal commID number
Return value
String value of commID. Empty string if HS is not communicated with the
application.

14.5.11 GetSourceIPAddr

Return the IP address of the network source which has received last message from the hand
terminal. String format like: “172.16.32.17”

BSTR GetSourceIPAddr(long id)

Parameters
id Hand terminal commID number
Return value
String value of source IP address

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 81

14.6 Receiver mode

14.6.1 Receiver

This command makes the hand terminal to listen transmissions continuously. The RECEIVER
function can be set ON/OFF by keyboard as well (SHIFT+F1).

After a hand terminal has received the message and the HOST has sent it independently, and when
RECEIVER is ON, the hand terminal answers to the HOST by RECEIVER_ACK command (1Ch). In
practice, the commands to the hand terminal are PopMessages or Bells. Sending other commands
can disturb the already existing works in the hand terminals. This is not however prevented, so the
HOST application has a responsibility for sending the commands.

When the RECEIVER is ON, PopMessages will be acknowledged as read by a DEL key. This
prevents the accidentally key press before reading the PopMessage.

PLServer is not able to know if the RECEIVER is switched ON/OFF by the user in the hand
terminal.

Note: WaitSerial and What methods cannot be used same time with this method.

Note:
Problem of this method is higher battery consumption and possibility of data loss. Also host
application developing might be quite complicate.
Consider to use “What” method instead of “Receive” method.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 82

BOOL Receiver (long id, short mode)

Parameters
id Hand terminal commID number
mode
0 RECEIVER mode OFF

1

Receiver cycle of listening messages from the HOST. Radio is
1 sec on and 2 sec off to save battery power. RECEIVER_ACK
is sent to the HOST after receiving message. When sending
messages with SendMessage method then parameter
resendTimes should be > 0.

2

Receiver cycle of listening messages from the HOST. Radio
is 2 sec on and 1 sec off to save battery power. RECEIVER_
ACK is not sent to the HOST after receiving message. When
sending messages with SendMessage method then parameter
resendTimes should be 0.

3

Listening Continuously messages from HOST. RECEIVER_
ACK is sent to the HOST after receiving message. When
sending messages with SendMessage method then parameter
resendTimes should be > 0.

4

Listening Continuously messages from HOST. RECEIVER_
ACK is not sent to the HOST after receiving message. When
sending messages with SendMessage method then parameter
resendTimes should be 0.

Return value
True Command added to the send buffer successfully
False Send buffer is full
See also:
“What”, IsReceiver, SendMsg,MessageReceiverNotFound (event)

14.6.2 IsReceiver

Determines if RECEIVER mode is ON or OFF in the hand terminal

BOOL IsReceiver(long id)

Parameters
id Hand terminal commID number
Return value
True Receiver mode has been set on the hand terminal.
False Not Receiver mode set
See also
Receiver ()
SendMsg()
MessageReceiverNotFound()

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 83

14.6.3 SendMsg

Similar to Send method. Application can sends messages to the specific hand terminal where
receiver mode is ON.

BOOL SendMsg(long receiverID, long senderID, short frameID, short resendTimes)

Parameters
receiverID Hand terminal commID, which receives the messages.
senderID User defined ID, which describes the sender.
frameID

The number of form defined by the user. Id frameID =-1, the
previously defined frameID

resendTimes

Defines how many ResendTimes cycles the message is sent
to the hand terminal if no answer is received. If the PLServer
cannot get RECEIVER_ACK from the hand terminal, and all the
resendTimes have been used, a MessageReceiverNotFound
event is launched. The cycle length is about 3 second.
For example, if resendTimes is two and the hand
terminal has not responded within 2*3 sec = 6sec,
MessageReceiverNotFound event is launced.

Return value
True Returns always True
See also
Receiver ()
IsReceiver()
MessageReceiverNotFound()

14.6.4 WaitReceiverAck

After message has been sent to the hand terminal using SendMsg, application can use
WaitReceiverAck method to check is hand terminal received message or not.

Waiting time is max 2 second. This method returns immediately if ack received. Receiver mode 1
or 3 must be used.

BOOL WaitReceiverAck(long id)

Parameters
id Hand terminal commID number
Return value
True Ack received from the hand terminal
False Ack not received
See also
SendMsg()
MessageReceiverNotFound()

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 84

14.6.5 MessageReceiverNotFound (event)

When sending messages with SendMessage method, PLServe waits RECEIVER_ACK from the
hand terminal. If the RECEIVER_ACK does not occur within resendTimes*3 seconds, this event is
launched.

(event) MessageReceiverNotFound(long receiverID, long senderID)

Parameters (given by PLServer)
receiverID Hand terminal commID, which does not response
senderID Message sender ID defined by SendMsg method.
See also
Receiver ()
IsReceiver()
SendMsg()

14.7 The hand terminal serial port methods

14.7.1 DataToSerial

Send text string to the serial port of the hand terminal.
Portable printer, card reader or any external device can be connected to the serial port of hand
terminals.

Serial settings are fixed to: 19200, n, 8, 1

BOOL DataToSerial (long id, LPCTSTR txt)

Parameters
id Hand terminal commID number
txt String to the hand terminal serial port.
Return value
True Command added to the send buffer successfully
False Send buffer is full
See also
WaitSerial ()
GetSerialData()
BinaryToSerial

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 85

14.7.2 BinaryToSerial

Send raw binary data to the serial port of the hand terminal.
Portable printer, card reader or any external device can be connected to the serial port of hand
terminals.

Serial settings are fixed to: 19200, n, 8, 1

BOOL BinaryToSerial (long id, short FAR* buffer, short length)

Parameters
id Hand terminal commID number
buffer Binary data (values 0-255)
length Length of the data in bytes.
Return value
True Command added to the send buffer successfully.
False Send buffer is full
See also
WaitSerial ()
DataToSerial()
GetSerialData()

14.7.3 WaitSerial

Open the serial port of the hand terminal for specific time. This command can be used to receive
data from the external device such as card reader. Serial port of the hand terminal cannot be open
all the time because current consumption then is higher.

Any data from the serial port goes directly to the active input field of the hand terminal. It depends
on the style bits of the input field whether the data is sent to the HOST or not after reading from
the serial port.

If delay value is 255, then the hand terminal sends serial port data directly to the HOST. The HOST
can read data with GetSerialData() method. By default, the hand terminal keeps serial port open
30 seconds after receiving this command where delay value is 255.

Serial settings are fixed to: 19200, n, 8, 1

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 86

BOOL WaitSerial (long id, int delay)

Parameters
id Hand terminal commID number
delay time to keep serial port open (1-99) seconds

255 = Data goes directly to the host. Otherwise to the active input field
Return value
True Command added to the send buffer successfully
False Send buffer is full
See also
DataToSerial ()
BinaryToSerial()
GetSerialData()

14.7.4 GetSerialData

If the hand terminal serial port has been opened with WaitSerial method and delay
parameter is 255, the hand terminal sends data from serial port directly to the HOST.
The HOST can read received data to its buffer with this method.

Serial settings are fixed to: 19200, n, 8, 1

short GetSerialData (long id, short FAR* serdata)

Parameters
id Hand terminal commID number

serdata
Data from the hand terminal serial port.

Return value
length of the serdata in bytes
See also
WaitSerial ()
DataToSerial()
BinaryToSerial()

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 87

14.8 Raw data methods

14.8.1 SendRawData

Send raw binary data to the TCP/IP connection session specified by ConnectToSerialServer
method.

short SendRawData (long connID, short FAR* rawData, short length)

Parameters

connID
Session number of the connection. (returned by
ConnectToSerialServer method)

rawData Binary data (values 0-255)
length Length of the data in bytes.
Return value
0 Sending failed. (connection not established)
1 Sending successful
See also
RawDataArrived (event)

14.8.2 RawDataArrived (event)

PLServer launches this event when receiving raw data from the TCP/IP connection.

(event) RawDataArrived(long connID, short FAR* data, short length)

Parameters (given by PLServer)
connID

Session number of the connection. (returned by
ConnectToSerialServer method)

data Raw Data from the TCP/IP connection
length Length of the received data
See also
SendRawData() method

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 88

14.9 General methods

14.9.1 DataIn

The data of the base station can be delivered to the driver control by this method.
When the data from the base station have been delivered to the driver control using the method,
the data to the base station will be offered by DataOut event.

void DataIn (short FAR* data, short data_len, short source_addr)

Parameters
data Data from the base station
data_len data length
source_addr User defined data source address
See also
DataOut()

14.9.2 DataOut (event)

When the data from the basestation have been delivered to the driver control using the DataIn
method, the data to the basestation will be offered by this event.

event DataOut (short FAR* data, short data_len, short dest_addr)

Parameters
data data to the base station
data_len data length
source_addr Destination address. Defined in DataIn method (source_addr).
See also
DataIn()

14.10 Sub Station Mode methods (SSM)

SSM is the new operating mode to D05BS/2 type base stations. Firmware version 2.0 and later
supports SSM mode. SSM functionality of the base station type D05BS/2 allows for asynchronous
transfer of arbitrary data wirelessly between the host and the any device which is provided with the
RS232 serial interface.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 89

14.10.1 SendSSMData

This method will send data to SSM mode base station and waits acknowledgement from the
SSM base station. Function wait acks from SSM 250*retries milliseconds.
The function returns when data ack received from SSM or the 250*retries milliseconds interval
elapses.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 90

BOOL SendSSMData (long ssmID, short msgNum, short FAR* data, short length, short
retries)

Parameters
ssmID SSM base station ID number.
msgNum SSM device requires different message numbers for each data.

SSM device passes data to it’s serialport only if msgNumber
is changed.

data data to the SSM base station. Allows byte values from 0-255
length length of data buffer in bytes
retries if no ack from SSM within 250 ms, then resend is made (max.

retries times).
Return value
TRUE Data is sent to the SSM base station successfully.
FALSE No acknowledgement from SSM base station.
See also
WaitSSMData()
SendSSMAck()
event DataFromSSM()
SendSSMASCIIData ()

14.10.2 SendSSMASCIIData

This method works same as SendSSMData except data is in string format. It sends string to
SSM mode base station and waits acknowledgement from the SSM base station. Function waits
ack from SSM 250*retries milliseconds. The function returns when data ack received from SSM
or the 250*retries milliseconds interval elapses.

BOOL SendSSMASCIIData (long ssmID, short msgNum, LPCTSTR dataString, short length,
short retries)

Parameters
ssmID SSM base station ID number.

msgNum

SSM device requires different message numbers for each
data.
SSM device passes data to its serial port only if msgNumber
is changed.

dataString String to the SSM base station. Allows byte values from 32-
255

length length of data buffer in bytes
retries If no ack from SSM within 250 ms, then resend is made

(max. retries times).
Return value
TRUE Data is sent to the SSM base station successfully.
FALSE No acknowledgement from SSM base station.
See also
WaitSSMData()
SendSSMAck()
event DataFromSSM()
SendSSMData ()

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 91

14.10.3 WaitSSMData

This method waits data from SSM device at specific time
The function returns when data is received from SSM or the ms_waitTime interval elapses.
Note: After receiving data from SSM, host application is responsible to send acknoledgement to
the SSM base station with SendSSMAck() method.

short WaitSSMData (long ssmID, short FAR* ssmData, short msWaitTime)

Parameters
ssmID SSM base station ID number.
ssmData Data from SSM device.

msWaitTime
Time how long function waits data from the SSM device in
milliseconds.

Return value
-1 NO data from SSM base station (msWaitTime interval has elapsed).
>=0 Received length of ssmData in bytes.
See also
SendSSMAck()
event DataFromSSM()
SendSSMASCIIData ()
SendSSMData ()

14.10.4 SendSSMAck

Send an acknowledgement to the SSM base station.
When the SSM base station has sent a data to the host, it waits for an acknowledgement.

It is the host program’s responsibility to send this ack after receiving data.
If the SSM base station doesn’t receive ack, it will resend the frame as many times as defined in
the SSM base station (typically 3)

void SendSSMAck (long ssmID)

Parameters
ssmID SSM base station ID number.
See also
WaitSSMData()
event DataFromSSM()
SendSSMASCIIData ()
SendSSMData ()

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 92

14.10.5 DataFromSSM (event)

PLServer launches this event when receiving raw data (byte values 0-255) from the SSM base
station.

Note: After receiving data from SSM, host application is responsible to send acknowledgement
to the SSM base station with SendSSMAck() method.

event DataFromSSM (long ssmID, short FAR* data, short length)

Parameters
ssmID data to the base station
data Data from the SSM base station.
length Length of the data in bytes.
See also
DataFromSSMASCII (event)

14.10.6 DataFromSSMASCII (event)

PLServer launches this event when receiving text string from the SSM base station.
DataFromSSM is launched before DataFromSSMASCII.

Note: After receiving data from SSM, host application is responsible to send acknowledgement
to the SSM base station with SendSSMAck() method.

event DataFromSSMASCII (long ssmID, LPCTSTR dataString, short length)

Parameters
ssmID data to the base station
dataString String from the SSM base station. (ASCII values 32-255)
length Length of the data in bytes.
See also
DataFromSSM (event)

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 93

14.11 Colors of PLServer “ID box”

• RED DATA_IN Hand Terminal is sent data to the PLServer. DataArrived event is launched.

• YELLOW READY_TO_SEND (hardly seen) HOST application has processed hand terminal data
and ’Send’ method is called. Then answer to the hand terminal is ready to send.

• GREEN SENT. Answer to the hand terminal has been sent.

• BLUE WAIT_WHAT Host application has built commands to the hand terminal and Send method
is called. If any hand terminal data is not in processed at the time, PLServer will send
this answer when hand terminal sends “WHAT” command.

• WHAT_IN Hand terminal is sent WHAT command but any answer to the hand terminal is not
ready. WHAT event is launched.

• WHITE with coloured sides. Indicates that hand terminal has a RECEIVER mode ON.

Installing PLServer and Redisributable DLLs

The setup program must install the necessary redistributable DLL files in the Windows system
directory. If any of the DLLs are already present on the user’s machine, the setup program should
compare their versions with the versions you are installing. Reinstall a file only if its version number
is higher than the file already installed.

Before PLServer can be used, it must be register to Windows registration database. You may want
your setup program to register the PLServer when it is installed. RegSvr32.exe can be used to
register PLServer.ocx.

PLServer uses Microsoft Foundation Classes (MFC) version 7.1.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 94

15 APPENDIX B RF6xx Communication protocol

15.1 Message Frame Structure

The communication between the RF6xx hand terminal and the HOST unit uses following
message structure:

Direction: Hand terminal to HOST

SOH LENGTH PREFIX_A PREFIX_B ID_H ID_L ID_X DATA CRC_H CRC_L

Direction: HOST to hand terminal

SOH LENGTH PREFIX_A ID_H ID_L DATA CRC_H CRC_L

SOH Start Of Header (ASCII 01H).
LENGTH The number of bytes in the DATA field

PREFIX_A

bit 0 “1” indicates that the message is repeated by a
repeater
bit 1 “ 0 “ indicates the message direction RF600 -> Host. “ 1
“ indicates the message direction Host -> RF600.
bit 2 “0”=RECEIVER ON “1”=RECEIVER OFF (direction
RF600->Host)
bit 3 “0”=Normal msg. transaction has started from the
hand terminal. “1”=HOST has sent message independently.
(direction HOST->RF600)
bit 4-7 RSSI - level. This value indicates the field strength of
the signal received at the Base Station

PREFIX_B

(Hand terminal >> Host only)
bit 0-3 Message number (0-15). This is incremented by 1 after
a successful transaction.
bit 4-6 Battery Level (since version 4.0)
bit 7 Reserved

ID_H High byte of the Hand terminal serial number.
ID_L Low byte of the Hand terminal serial number.
ID_X Extra ID. A byte that can be set by the user.

DATA This field includes the actual data and the commands. ASCII
values from 0Eh to 1Fh are reserved for the commands.

CRC_H High byte of the Checksum.
CRC_L Low byte of the Checksum.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 95

15.1.1 Calculating CRC

The 16-bit CRC-CCITT Checksum is calculated from ID_H to the last databyte. See C-source
example function as follows:

unsigned short crc;
crc = 0;
calc_crc(ID_H);
calc_crc(ID_L);
.
.
calc_crc(<last databyte>);
CRC_H = (unsigned char)(crc>>8);
CRC_L = (unsigned char)crc;
.
.
void calc_crc(unsigned char character)
{
 unsigned short crc_tmp;
 crc_tmp = (crc ^ character) & 0x0F;
 crc = (crc >> 4) ^ (crc_tmp * 4225);
 crc_tmp = (crc ^ (character >> 4)) & 0x0F;
 crc = (crc >> 4) ^ (crc_tmp * 4225);
}

15.1.2 Hand terminal Display

The RF600 Hand terminal has a virtual display page of 12 x 20 characters. The actual display size
is 8 x 20 characters, so that only one third of the virtual page can be viewed at one time.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 96

15.1.3 Initial Display Prompt

An initial prompt will always be displayed if no fields have been defined. This will usually occur
when the Hand terminal is switched on or when the RAM is cleared. The initial display uses a user
writeable header and a 18 character length input field.

15.1.4 Text output on the Hand terminal Display

The Hand terminal fills its display buffer with the data from the received frame. When no cursor
control commands are given (SET_CURSOR), the string will be displayed starting with position 0.
The SET_CURSOR command moves the starting point to the position given in the command. The
size of the Virtual Display cannot be exceeded. Carriage Return (0Dh) gives a line feed and moves
the cursor to the start of the next line, TAB (09h) moves the cursor forward 4 positions.

15.1.5 Commands HOST --> Hand terminal

Command Table

HEX SYMBOL BYTES SYNTAX DESCRIPTION

06 ACK 1 06h Acknowledgement from the Host

07 BELL 1 07h Generates a beep

09 VT 1 09h Tabulator, moves the cursor 4
positions

0A SPC_CMD 5 0Ah
Special command for hand
terminal

0D CR 1 0Dh Carriage Return + Line Feed

0E SET_CURSOR 2 0Eh | POS Cursor Control

0F NEW_FIELD 4
0Fh | POS | L |
STYLE

Definition of the Input Field

10 BELL_EX >=2
10h | L | duration |
delay..

Generates a beep sequence with
specfic duration of beep and
duration of delay

11 FIELD_CMD 3 11h | POS | FCMD
Defines the parameters of the
Input Field

12 CLEAR_CMD 4
12h | CCMD | POS_
START | POS_STOP

Partially clears the Display.

13 SET_VIEW 2 13h | ROW Sets the Viewing Window

14 POP_MSG >2 14h | L | txt... Puts the message in the Display

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 97

16 FLD_TXT >=2 16h | POS | L | txt..
Fills (presets) the field with the
text.

17 BUTTON >=3 17h | POS | L | txt..
Definition of the “button” style
input field

18 SEND_WHAT 2 18h | DELAY
Send “WHAT” command to HOST
when DELAY has expired.

19 DATA_TO_SERIAL >=2 19 | L | txt
Sends txt to the serial port of the
hand terminal

1A WAIT_SERIAL 2 1A | DELAY
Waits data from the serial port at
specific time

1B NEW_FIELD_EX 4
1Bh | POS | L |
STYLE

Definition of the Input Field

1C RECEIVER 2 1Ch | mode Receiver mode on/off

1D FORM_ID 3
1Dh | FID_HI | FID_
LO

User defined ID of the form

15.1.6 Order of Execution OF Commands

The Hand terminal executes commands from the Host in the following order:

1. POP_MSG (only 1 allowed per frame)
2. CLEAR_CMD
3. ACK
4. Text printing and BELLs
5. BUTTON
6. FIELD_CMD
7. NEW_FIELD
8. NEW_FIELD_EX
9. FLD_TXT
10. SET_VIEW only 1 allowed per frame
11. SEND_WHAT only 1 allowed per frame
12. WAIT_SERIAL only 1 allowed per frame
13. DATA_TO_SERIAL only 1 allowed per frame
14. RECEIVER only 1 allowed per frame
16. FORM_ID only 1 allowed per frame
15. SPC_CMD only 1 allowed per frame

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 98

15.1.7 SET_CURSOR

Description: Cursor control (2 bytes)

Syntax: 0Eh | POS

POS Cursor position (0 - 239).

15.1.8 NEW_FIELD

Description: Defines a new Input field (4 bytes)

Syntax: 0Fh | POS | L | STYLE

POS Starting point of the field (0-239).
L Field length (1 - 63).
STYLE Field functions.

STYLE bits can be set or cleared to enable or disable the function.

Bit 0 SND_ENTER Field is sent to HOST by pressing the OK key.

Bit 1 NO_SEND
Field is not sent if the SND_ALL command occurs. Field will be sent, If the
field itself gave the SND_ALL command.

Bit 2 SND_ALL
All fields in the page, (except NO_SEND fields) are sent to the host when
the OK key is pressed.

Bit 3 FLD_LOCK Field is locked. Field cannot be written to (used for “Button” style fields.)

Bit 4 FLD_LINE Field is underlined ._ _ _ _ _ _ _ _ _ _ _

Bit 5 FLD_READER Field can be filled with laser- or external scanner data.

Bit 6 FLD_CLR Field is cleared if ACK is received .

Bit 7 FLD_ACTIVE Field is active (it has a cursor).

SND_ENTER and FLD_READER combinations:

SND_ENTER FLD_READER FUNCTION

0 0
Field is not sent by pressing the OK key, and cannot be read with
a laser scanner.

0 1
Field is not sent by pressing the OK key, but it can be filled from
the keyboard and with a laser scanner.

1 0
Field is sent by pressing the OK key, but cannot be filled with a
laser scanner.

1 1 Field is sent by pressing the OK key or by reading with a laser
scanner.

A maximum of 20 input fields can be defined for one form.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 99

15.1.9 NEW_FIELD_EX

Description: Defines a new Input field (4 bytes)

Syntax: 1Bh | POS | L | STYLE

POS Starting point of the field (0-239).
L Field length (1 - 63).
STYLE Field functions.

STYLE bits can be set or cleared to enable or disable the function.

Bit 0 SND_ENTER Field is sent to HOST by pressing the OK key.

Bit 1 NO_SEND
Field is not sent if the SND_ALL command occurs. Field will be sent,
If the field itself gave the SND_ALL command.

Bit 2 SND_ALL
All fields in the page, (except NO_SEND fields) are sent to the host
when the OK key is pressed.

Bit 3 Reserved Reserved

Bit 4 OVR

Overwrite mode. When OVR is set, and the field becomes active, the
cursor moves to the starting position of the field. When the cursor
is in the starting position, the previous text will be overwritten by
typing.

Bit 5 FLD_READER Field can be filled with laser- or external scanner data.

Bit 6
READER_
DEFAULT

If another field is active and it has not FLD_READER set, laser
scanner is activated and data goes to this field automatically. Only
one READER_DEFAULT field can be defined per form. This bit has no
effect if FLD_READER bit is not set.

Bit 7 FLD_ACTIVE Field is active (it has a cursor).

SND_ENTER and FLD_READER combinations:

SND_ENTER FLD_READER FUNCTION

0 0
Field is not sent by pressing the OK key, and cannot be read with
a laser scanner.

0 1
Field is not sent by pressing the OK key, but it can be filled from the
keyboard and with a laser scanner.

1 0
Field is sent by pressing the OK key, but cannot be filled with a laser
scanner.

1 1
Field is sent by pressing the OK key or by reading with a laser
scanner.

NEW_FIELD_EX is same as NEW_FIELD command but style bit’s OVR and READER_DEFAULT are
replaced bit’s _LINE and FLD_CLR.

Field is underlined automatically. A maximum of 20 input fields can be defined for one form.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 100

15.1.10 FIELD_CMD

Description: Definition of the field function.

Syntax: 11h | POS | FCMD

POS Field position (0-239).
FCMD Commands of the field

FCMD:

Bit 0 FLD_REMOVE Removes the field.
Bit 1 FLD_CLEAR Clears the field (also locked fields).
Bit 2 ***** Reserved.
Bit 3 FLD_LOCK Locks the field (cannot be written to).
Bit 4 ***** Reserved.
Bit 5 ***** Reserved.
Bit 6 ***** Reserved.
Bit 7 FLD_ACTIVE Field is set to active.

15.1.11 FLD_TXT

Description: Fills (presets) the field with the text. (3 +TXT bytes)
If the length of TXT is more than the length of field, the excess TXT will be corrupted. If field is
already filled with text, it will be replaced with the new text.

Syntax 16h | POS | L | TXT

POS Field POS.
L Length of text
TXT Text for the field.

15.1.12 BUTTON

Description: Creates a “button” style field. (3 +TXT bits)

The BUTTON command will create a locked field filled with text. Field text (TXT) will be sent to the
HOST by pressing the OK key.

Syntax 17h | POS | L | TXT

POS Button position (0-239).
L Length of button.
TXT Text for a button.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 101

This command is suitable for menu creation.
SND_ALL and NO_SEND functions are disabled.

To create a button field with SND_ALL and NO_SEND functions, use the NEW_FIELD and FLD_
TXT commands instead of the BUTTON command.

15.1.13 CLEAR_CMD

Description: Partially clears the display of any text or field

Syntax 12h | CCMD | POS_START | POS_STOP

CCMD Clearing flags

CCMD:
Bit 0 CLEAR_TXT Removes text from POS_START to POS_STOP.
Bit 1 CLEAR_FLD Removes fields from POS_START to POS_STOP.
Bit 2 CLEAR_FLDDATA Clears the field data from POS_START to POS_STOP.
Bit
3-7

***** Reserved.

15.1.14 SEND_WHAT

Description: Hand terminal send WHAT command (18h) to HOST when DELAY has expired.

Syntax 18h | DELAY

DELAY 1-99 seconds.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 102

15.1.15 SET_VIEW

Description: Sets the Hand terminal display view. Generally the display view will be set
automatically when fields are edited.

Syntax 13h | ROW

ROW
Top most line number of the row (0-3). If this
value is greater than 3, this command will be
corrupted.

15.1.16 POPMSG

Description: This command defines a text string which is displayed as long as any key is pressed.

Syntax 14h | L | TXT

L Length of TXT (Text length+cursor controls).

TXT
Printable ASCII characters. (may include SET_
CURSOR , VT and CR)

The text will be displayed from position 0. The cursor can be set from 0-79. Text over this area
will be corrupted. Only one POPMSG command can be included in the frame.

15.1.17 BELL

Description: Generates a beep

Syntax 07h

15.1.18 BELL_EX

Description: Generates a beep sequence with specfic duration of beep and duration of delay

Syntax: 10h | L | BEEP_ON_DURATION | BEEP_OFF_DURATION

L Length of ON/OFF durations in bytes

BEEP_ON_DURATION
Beeper is ON 10 x BEEP_ON_DURATION milliseconds. (eg. value 100
= 1 seconds)

BEEP_OFF_DURATIONBeeper is OFF 10 x BEEP_OFF_DURATION milliseconds.

Example of “S.O.S” tone:
10h | 18 | 5 | 10 | 5 | 10 | 5 | 30 | 15 | 10 | 15 | 10 | 15 | 30 | 5 | 10 | 5 | 10 | 5 | 10

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 103

15.1.19 DATA_TO_SERIAL

Description: Sends DATA to the serial port of the hand terminal.

Portable printer, card reader or any external device can be connected to the serial port of hand
terminals and thus are able to receive the DATA sent by HOST.

Serial settings are fixed to: 19200,n,8,1

Syntax 19h | L | DATA

L DATA length
DATA Any ASCII characters. (0-255)

15.1.20 WAIT_SERIAL

Description: Open the serial port of the hand terminal for specific time.

This command can be used to receive data from the external device such as card reader. Serial
port of the hand terminal cannot be open all the time because current consumption then is
higher.
Any data from the serial port goes directly to the active input field of the hand terminal. It
depends on the style bits of the input field whether the data is sent to the HOST or not after
reading from the serial port.

Serial settings are fixed to: 19200,n,8,1

Syntax 1Ah | DELAY

DELAY 1-99 seconds

New function since version 4.0
When DELAY parameter is 255, hand terminal will send all received serial data to the HOST
directly. (Command: 11h | L | DATA)

Serial port of the hand terminal will stay open 30 seconds.

Note: RECEIVER command cannot be used same time with this command.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 104

15.1.21 RECEIVER

Description: This command makes the hand terminal to listen transmissions continuously. The
RECEIVER function can be set ON/OFF by keyboard as well (SHIFT+F1).

After a hand terminal has received the message and the HOST has sent it independently, and when
RECEIVER is ON, the hand terminal answers to the HOST by RECEIVER_ACK command (1Ch).

In practise, the commands to the hand terminal are PopMessages or Bells. Sending other commands
can disturb the already existing works in the hand terminals. This is not however prevented, so the
HOST application has a responsibility for sending the commands.

When the RECEIVER is ON, PopMessages will be acknowledged as read by a DEL key. This
prevents the accidentally key press before reading the PopMessage.

Syntax 1Ch | mode

mode:
0 RECEIVER mode OFF

1
Receiver cycle of listening messages from the HOST. Radio is 1 sec on and 2 sec off
to save battery power. RECEIVER_ACK is sent to the HOST after receiving message.

2
Receiver cycle of listening messages from the HOST. Radio is 2 sec on and 1 sec
off to save battery power. RECEIVER_ACK is not sent to the HOST after receiving
message.

3
Listening Continuously messages from HOST. RECEIVER_ACK is sent to the HOST
after receiving message.

4
Listening Continuously messages from HOST. RECEIVER_ACK is not sent to the
HOST after receiving message.

Note: WAIT_SERIAL command cannot be used same time with this command.

15.1.22 FORM_ID

Description: This command defines a specific ID number which describes the form. This command
is useful if the HOST application uses several different forms on the hand terminal. After the data
has sent from the hand terminal, the HOST application receives the ID number of the form and then
application can determine the actions of data. Upto 65535 different form ID:s can be defined.

The FORMID value is stored in the Hand Terminal memory. The Hand Terminal sends this value
everytime to the HOST. If FORMID is defined to 0 or Hand Terminal is resetted, then Hand Terminal
does not send FORMID value to the HOST.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 105

Syntax 1D | FID_HI | FID_LO

FID_HI High byte of form ID
FID_LO Low byte of form ID

FORM_ID is not sent by hand terminal if:

• FORM_ID is not defined
• FID_HI = 0 and FID_LO = 0
• Hand Terminal is resetted

15.1.23 SPC_CMD

Description: SPC_CMD defines special functionalities to the hand terminal.

Syntax 0A | FUNC | D1 | D2 | D3

FUNC

Bit 0

If this bit is set, the hand terminal will emulate the one key press. The key is defined
in parameter D1
Example: 0A | 01 | 06 | 0 | 0 BAR
emulates a BAR button press.

Bit 1

If this bit is set, the hand terminal sends keystrokes directly to the HOST. The HOST
application can define the keys with parameter D1-D3 that sends the keystrokes to
the HOST.
Example: UP and DOWN keys will send keystokes to the HOST (hex values):
0A | 02 | 0 | 6 | 0
This function is valid as long as user resets the device or HOST send SPC_CMD
where Bit 1 is not set.
When the user presses the key which is defined to send keystroke, the hand
terminal sends SPC_MSG to the HOST (0A | 01 | KEYSTROKE). After that the hand
terminal will wait a response from the HOST.

Bit 2
Password style for input field. D1,D2,D3 will define a position of the password input
field. The Handterminal user can only see ‘*’ asterix chars when typing to the input
field.

Bit 3 Reserved
Bit 4 Reserved
Bit 5 Reserved
Bit 6 Reserved
Bit 7 Reserved

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 106

FUNC Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Emulates
the key
press

Hand
terminal
sends
keystrokes
to the
HOST

Password
style
input
fields

D1

Key value
(decimal)

F1 = 1
F2 = 2
F3 = 3
F4 = 4
F5 = 5
BAR = 6
DEL = 7
DOT = 8
MINUS = 9
UP = 10
DOWN = 11
OK = 12
0 = 13
1 = 14
2 = 15
3 = 16
4 = 17
5 = 18
6 = 19
7 = 20
8 = 21
9 = 22

Key (return
value)

Position of
password
input
field.

255 = not
defined

Bit 0 F1 (1)
Bit 1 F2 (2)
Bit 2 F3 (3)
Bit 3 F4 (4)
Bit 4 F5 (5)
Bit 5 BAR (6)
Bit 6 DEL (7)
Bit 7 DOT (8)

D2 x

Position of
password
input
field.

255 = not
defined

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 107

Bit 0 x MINUS (9)
Bit 1 x UP (10)
Bit 2 x DOWN (11)
Bit 3 x OK (12)
Bit 4 x 0 (13)
Bit 5 x 1 (14)
Bit 6 x 2 (15)
Bit 7 x 3 (16)

D3 x

Position of
password
input
field.

255 = not
defined

Bit 0 x 4 (17)
Bit 1 x 5 (18)
Bit 2 x 6 (19)
Bit 3 x 7 (20)
Bit 4 x 8 (21)
Bit 5 x 9 (22)
Bit 6 x x
Bit 7 x x

x = not
used

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 108

15.1.24 Commands Hand terminal --> HOST

Command Table

HEX SYMBOL BYTES SYNTAX DESCRIPTION

10 FIELD_DATA 3+L
10h | POS | L |
DATA

Description: Data from the Hand terminal.
Indicates the position (address) of the
data sent from the fields.

Syntax: 10h | POS | L | DATA (3+L bytes)
POS Field POS (0 - 239).
L Number of bytes in the DATA part.
DATA Field data. (ASCII text)

Text, sent from the Hand terminals initial
screen or from F-keys do not use this
command.

18 WHAT 1 18h
The Hand terminal sends this command
when DELAY has expired in SEND_WHAT
command.

1C RECEIVER_ACK 1 1Ch
Hand terminal has received message from
the HOST which is sended independently
by the HOST.

1D FORM_ID 3
1Dh | FID_HI |
FID_LO

If FORM_ID is defined, Hand Terminal
sends it always at beginning of the DATA
block. (first 3 bytes in data block)

0B SPC_MSG 3
0Ah | TYPE |
D1

Special message from hand terminal.
Hand terminal sends this message if
specific function is defined earlier with
SPC_CMD:

If TYPE = 1 :
Keystroke from hand terminal.
D1 contains keystroke number

Note: The hand terminal requires
response.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 109

1F SSM_DATA 2+L 1Fh | L | DATA

When the SSM base station receives data
from the device attached to its serial port,
it encapsulates the data into an SSM_
DATA command and sends it to the host.

L Number of bytes in the DATA part. If
the attached device tries to send a string
that is longer than the maximum frame
size (about 250 bytes), it is split to two
or more frames. When the SSM base
station has sent a frame to the host, it
waits for an acknowledgement. It is the
host program’s responsibility to send this
acknowledgement; unlike the SSM base
station, the host base station will not
automatically send an acknowledgement.
An empty frame serves as an
acknowledgement for the SSM base
station, ie. a frame that has length 0 and
no data part:

SOH | 0 | PREFIX_A | ID_H | ID_L | CRC_H
| CRC_L

If the SSM base station receives no
acknowledgement, it will resend the
frame. The host program should use the
message number field in the message
prefix A byte to distinguish between new
frames and possible superfluous resends.

11 SERIAL_DATA 2+L 11h | L | DATA

Data from serial port of the hand terminal.
When HOST has defined WAIT_SERIAL
command and delay parameter is 255,
hand terminal sends serial port data
directly to the HOST with this command.

L Length of DATA
DATA data from serial port

Note: The hand terminal requires
response.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 110

16 APPENDIX C RF600 SSM mode protocol

16.1 Purpose of this document

This presentation documents the RF600 communication protocol extensions that support the
substation modem (SSM) mode of the base station. It is assumed that the reader is already familiar
with the other aspects of the communication protocol (see the document ‘RF600 Communication
Protocol’).

16.2 Overview

The SSM mode of the RF600 base station allows for asynchronous transfer of arbitrary data between
the host and the SSM base station. For the host base station, the SSM base station looks like a hand
terminal and is treated identically. The data transmitted to the SSM base station is stripped of the
RF600 protocol frame and sent to the serial port as a stream of raw bytes. When the device attached
to the SSM station sends data to the SSM station, the data is encapsulated into a protocol frame
and sent to the host system. The device connected to the SSM base station need not understand
anything about the communication protocol; the SSM base station acts as a mediator between the
device and the RF600 wireless network. Due to the asymmetric nature of parties involved in the
data transfer, the procedure to send data from the host to the SSM base station is different from the
procedure used for the other direction. Both are described in detail separately below. The traffic to
the SSM base station uses the host to hand terminal protocol, whereas communication from the
SSM base station to the host station uses the hand terminal to host protocol.

16.3 The power-on configuration

In SSM mode the base station supports arbitrary serial port configurations (between transfer rates
of 1200 to 19200 bps). However, to configure the base station with the Piccopla program, the serial
port must in a known configuration. Therefore, when the base station that has been set to function
in the SSM mode is powered, it sets the serial port into 19200,8,n,1 mode and waits a certain period
for configuration commands. If no commands are received before the period (set to 10 seconds
as a factory setting) expires, the base station initializes its serial port to the user-configured mode.
During the configuration period both lights on the base station will be lit. When the base station
goes to normal operation and is ready to receive data, the transmit light will go out.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 111

16.4 Sending data from the host to the SSM base station

The SSM base stations are addressed by their serial numbers in the same way hand terminals are.
The frame sent to the SSM base station should contain a frame number in the first byte of the data
part, and immediately after that the data as a sequence of raw bytes. Note that there is no special
command character before the actual data part; everything (after the frame number) sent to an
SSM base station is assumed to be data. When the SSM base station receives the frame, it strips
the header, frame number and the checksum from it and passes only the actual data to the serial
port, in the exact order and format given in the frame.

(Header)
Frame
number
(1 byte)

Data (1
or more
bytes)

(Checksum)

When the SSM base station receives a frame (that is not itself an acknowledgement; see below), it
sends back an acknowledgement frame. This frame contains only the RECEIVER_ACK character
(1Ch). It is the host program’s responsibility to wait for the acknowledgement and manage resends,
if no acknowledgement is received.

(Header) 1Ch (Checksum)

In case the acknowledgement sent by the SSM base station is lost or the SSM base station receives
a duplicate data frame for some other reason, the frame number byte is used to distinguish between
resends of a previous frame and completely new frames. Therefore, it should be different for every
new frame, but remain the same on every resend. It is the host programs responsibility to ensure
that this convention is followed. Note that there is no inherent meaning to the frame numbers;
as long as the rules laid out above are followed, any convenient numbering convention may be
adopted (for example, sequential frame numbering or simply numbers alternating between one
and zero).

16.5 Sending data from the SSM base station to the host

When the SSM base station receives data from the device attached to its serial port, it encapsulates
the data into an SSM_DATA command and sends it to the host. The SSM_DATA has the following
format:

1Fh Len Data

The Len field indicates the number of bytes in the data part. If the attached device tries to send
a string that is longer than the maximum frame size (about 250 bytes), it is split to two or more
frames.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 112

When the SSM base station has sent a frame to the host, it waits for an acknowledgement. It is
the host program’s responsibility to send this acknowledgement; unlike the SSM base station, the
host base station will not automatically send an acknowledgement. An empty frame serves as an
acknowledgement for the SSM base station, i.e. a frame that has length 0 and no data part:

SOH 0 PREFIX_A ID_H ID_L CRC_H CRC_L

If the SSM base station receives no acknowledgement, it will resend the frame. The host program
should use the message number field in the message PREFIX_A byte to distinguish between new
frames and possible superfluous resends.

�������������������

©2005 Nordic ID Oy
RF-series System Developer Guide, v. 1.0 113

	Host application developing for the RF-family hand terminals
	Document history:
	Abstract
	1 System operation
	1.1 Operation of the Hand terminal
	1.2 Initial state
	1.3 Starting transaction
	1.4 How many hand terminals can be used in same system?

	2 Host application
	2.1 Host application security
	2.1.1 Radio link security
	2.2 Checklist for good quality backend software developing
	2.3 Character map of the hand terminal
	2.4 Single- or multi threaded application?
	2.4.1 Single thread application
	2.4.2 Multi threaded application

	2.5 Drivers
	2.5.1 PLServer
	2.5.2 Drivers for non-windows environment

	3 Building development environment
	3.1 System requirements
	3.2 Sample program installation
	3.3 Installing hardware
	3.4 Test your hardware

	4 My first host application
	4.1 Creating”Hello World” Visual C++ project

	5 Handling hand terminal messages
	5.1 DataArrived event
	5.1.1 DataArrived (event)
	5.1.2 Starting the data handler thread

	5.2 Forms
	5.2.1 Hand terminal display area
	5.2.2 Application forms
	5.2.3 Designing forms
	5.2.4 User Interface elements
	5.2.5 Main menu
	5.2.6 Handling data from Main menu form
	5.2.7 The branching of the program
	5.2.8 Clearing the UI elements

	6 Input fields
	6.1 Creating an input field
	6.2 Input field reading to the application
	6.2.1 The validation of the input field contents

	6.3 Sending the text to the input field
	6.3.1 Modifying the existing input field
	6.3.2 Password style input fields

	7 PopMessage
	8 Sounds
	9 Sending a message to hand terminal
	9.1 Application example
	9.1.1 What method
	9.1.2 What
	9.1.3 Hand terminal behavior when “What” is sent.
	9.1.4 Using “What” method instead of “Receiver” method

	10 Base station connections
	10.1 Serial port connection
	10.2 Connecting several base stations
	10.2.1 Device servers
	10.2.2 StartServer

	11 Receiving and Transmitting RAW data
	12 RF6xx Application Router
	12.1 The RF6xx Application Router features
	12.2 System operation
	12.3 Format of connList.txt
	12.3.1 Serial Port Connection
	12.3.2 Start server
	12.3.3 Client connection.
	12.3.4 HOST application connections

	12.4 Format of appList.txt
	12.4.1 List of Remote host applications
	12.4.2 Hand terminal access right list
	12.4.3 Main menu item text
	12.4.4 Main menu header text
	12.4.5 Host down notification text

	13 Host application samples on the CD
	13.1 Forms sample
	13.1.1 Calculator
	13.1.2 Auto Scanning
	13.1.3 User authorization form

	13.2 FastInventory
	13.3 WhatTest
	13.4 SlideControl
	13.5 Software wedge
	13.6 PLMultiThread
	13.7 ScanAndSend

	14 APPENDIX A PLServer methods and events
	14.1 Base station connection methods
	14.1.1 Connect
	14.1.2 StartServer
	14.1.3 StopServer
	14.1.4 ConnectToSerialServer
	14.1.5 DisconnectSerialServer
	14.1.6 GetSerialSvrStatus
	14.1.7 SerialServerMessage (event)

	14.2 User Interface elements
	14.2.1 Text and TextEx
	18.2.2 Button
	14.2.3 NewField
	14.2.4 NewFieldEx
	14.2.5 PopMessage
	14.2.6 Ack
	14.2.7 SpecialCmd
	14.2.8 GetSpecialData

	14.3 Form and UI-element commands
	14.3.1 ClearForm
	14.3.2 ClearCmd
	14.3.3 FieldCmd
	14.3.4 FldTxt
	14.3.5 SetView
	14.3.6 SetFormID
	14.3.7 GetFormID
	14.3.8 What
	14.3.9 What (event)
	14.3.10 Send
	14.3.11 DataArrived (event)
	14.3.12 DataFromHsField (event)
	14.3.13 SetNotify

	14.4 Sound methods
	14.4.1 Bell
	14.4.2 Beep

	14.5 Data receiving
	14.5.1 GetData
	14.5.2 IsData
	14.5.3 GetExtraID
	14.5.4 GetMessageNumber
	14.5.5 GetRSSI
	14.5.6 GetLastFrameID
	14.5.7 GetReceiveBuffer
	14.5.8 GetBatteryLevel
	14.5.9 GetCRCValue
	14.5.10 GetHsIdString
	14.5.11 GetSourceIPAddr

	14.6 Receiver mode
	14.6.1 Receiver
	14.6.2 IsReceiver
	14.6.3 SendMsg
	14.6.4 WaitReceiverAck
	14.6.5 MessageReceiverNotFound (event)

	14.7 The hand terminal serial port methods
	14.7.1 DataToSerial
	14.7.2 BinaryToSerial
	14.7.3 WaitSerial
	14.7.4 GetSerialData

	14.8 Raw data methods
	14.8.1 SendRawData
	14.8.2 RawDataArrived (event)

	14.9 General methods
	14.9.1 DataIn
	14.9.2 DataOut (event)

	14.10 Sub Station Mode methods (SSM)
	14.10.1 SendSSMData
	14.10.2 SendSSMASCIIData
	14.10.3 WaitSSMData
	14.10.4 SendSSMAck
	14.10.5 DataFromSSM (event)
	14.10.6 DataFromSSMASCII (event)
	14.11 Colors of PLServer “ID box”

	15 APPENDIX B RF6xx Communication protocol
	15.1 Message Frame Structure
	15.1.1 Calculating CRC
	15.1.2 Hand terminal Display
	15.1.3 Initial Display Prompt
	15.1.4 Text output on the Hand terminal Display
	15.1.5 Commands HOST --> Hand terminal
	15.1.6 Order of Execution OF Commands
	15.1.7 SET_CURSOR
	15.1.8 NEW_FIELD
	15.1.9 NEW_FIELD_EX
	15.1.10 FIELD_CMD
	15.1.11 FLD_TXT
	15.1.12 BUTTON
	15.1.13 CLEAR_CMD
	15.1.14 SEND_WHAT
	15.1.15 SET_VIEW
	15.1.16 POPMSG
	15.1.17 BELL
	15.1.18 BELL_EX
	15.1.19 DATA_TO_SERIAL
	15.1.20 WAIT_SERIAL
	15.1.21 RECEIVER
	15.1.22 FORM_ID
	15.1.23 SPC_CMD
	15.1.24 Commands Hand terminal --> HOST

	16 APPENDIX C RF600 SSM mode protocol
	16.1 Purpose of this document
	16.2 Overview
	16.3 The power-on configuration
	16.4 Sending data from the host to the SSM base station
	16.5 Sending data from the SSM base station to the host

